Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01110 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/matecconf/202439201110 | |
Published online | 18 March 2024 |
- Khan MSI, Rahman A, Debnath T, Karim MR, Nasir MK, Band SS, Mosavi A, Dehzangi I” Accurate brain tumor detection using deep convolutional neural network”- Comput Struct Biotechnol J. 2022 Aug 27;20:4733-4745. doi: 10.1016/j.csbj.2022.08.039. PMID: 36147663; PMCID: PMC9468505. [CrossRef] [Google Scholar]
- ZainEldin H, Gamel SA, El-Kenawy EM, Alharbi AH, Khafaga DS, Ibrahim A, Talaat FM. Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization. Bioengineering (Basel). 2022 Dec 22;10(1):18. doi:10.3390/bioengineering10010018. PMID: 36671591; PMCID: PMC9854739. [CrossRef] [Google Scholar]
- T. Hossain, F. S. Shishir, M. Ashraf, M. A. Al Nasim and F. Muhammad Shah, “Brain Tumor Detection Using Convolutional Neural Network,” 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 2019, pp. 1-6, doi: 10.1109/ICASERT.2019.8934561. [Google Scholar]
- S. Solanki, U. P. Singh, S. S. Chouhan and S. Jain, “Brain Tumor Detection and Classification Using Intelligence Techniques: An Overview,” in IEEE Access, vol. 11, pp. 12870-12886, 2023, doi: 10.1109/ACCESS.2023.3242666. [CrossRef] [Google Scholar]
- D. Suresha, N. Jagadisha, H. S. Shrisha and K. S. Kaushik, “Detection of Brain Tumor Using Image Processing,” 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2020, pp. 844-848, doi:10.1109/ICCMC48092.2020.ICCMC-000156. [Google Scholar]
- A. Sinha, A. R P, M. Suresh, N. Mohan R, A. D and A. G. Singerji, “Brain Tumour Detection Using Deep Learning,” 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 2021, pp. 1-5, doi:10.1109/ICBSII51839.2021.9445185. [Google Scholar]
- N. A. Alhamdi and A. Mohamed Alshanta, “Brain Tumor Detection using Machine Learning and Deep Learning,” 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Benghazi, Libya, 2023, pp. 89-92, doi: 10.1109/MISTA57575.2023.10169200. [Google Scholar]
- G. Hemanth, M. Janardhan and L. Sujihelen, “Design and Implementing Brain Tumor Detection Using Machine Learning Approach,” 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2019, pp. 1289-1294, doi: 10.1109/ICOEI.2019.8862553. [Google Scholar]
- R. Jahan and M. M. Tripathi, “Brain Tumor Detection Using Machine Learning in MR Images,” 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, 2021, pp. 664-668, doi:10.1109/CSNT51715.2021.9509695. [Google Scholar]
- O. T. Khan and D. Rajeswari, “Brain Tumor detection Using Machine Learning and Deep Learning Approaches,” 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2022, pp. 1-7, doi:10.1109/ACCAI53970.2022.9752502. [Google Scholar]
- A. Kharrat, N. Benamrane, M. B. Messaoud and M. Abid, “Detection of brain tumor in medical images,” 2009 3rd International Conference on Signals, Circuits and Systems (SCS), Medenine, Tunisia, 2009, pp. 1-6, doi: 10.1109/ICSCS.2009.5412577. [Google Scholar]
- B. Shetty, R. Fernandes, A. P. Rodrigues and P. Vijaya, “Brain Tumor Detection using Machine Learning and Convolutional Neural Network,” 2022 International Conference on Artificial Intelligence and Data Engineering (AIDE), Karkala, India, 2022, pp. 86-91, doi: 10.1109/AIDE57180.2022.10060254. [Google Scholar]
- R. Sankaranarayaanan, M. S. Kumar, B. Chidhambararajan and P. Sirenjeevi, “Brain tumor detection and Classification using VGG 16,” 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-5, doi: 10.1109/ICECONF57129.2023.10083866. [Google Scholar]
- Á. Győrfi, L. Kovács and L. Szilágyi, “Brain Tumor Detection and Segmentation from Magnetic Resonance Image Data Using Ensemble Learning Methods,” 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 909-914, doi: 10.1109/SMC.2019.8914463. [Google Scholar]
- Syed Umar, Yerragudipadu Subbarayudu, K. Kiran Kumar, N. Bashwanth, “Designing of Dynamic Re-clustering Leach Protocol for Calculating Total Residual Time and Performance”,International Journal of Electrical and Computer Engineering (IJECE)Vol.7, No.3, June2017, pp. 1286~1292ISSN: 2088-8708, DOI:10.11591/ijece.v7i3.pp1286-1292 [Google Scholar]
- Yerragudipadu Subba Rayudu, R M Noorullah and C Praveen Kumar, Scribble Legalization Cryptographic Aspect Based On Data Access Control For Steam Count, VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608, “ARPN Journal of Engineering and Applied Sciences” ©2006-2018 Asian Research Publishing Network (ARPN). [Google Scholar]
- Subbarayudu Y, Reddy R.O. Anjaiah, P. “A study on user mobility in device to device (D2D) networks through distrubted catching”, IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017.2018 DOI:10.1109/ICPCSI.2017.8391798 EID: 2-s2.0-85050095042, URL: http://www.scopus.com/inward/record.url?Eid=2-s2.0 85050095042&partnerid=MN8TOARS [Google Scholar]
- Subbarayudu Y. Rakesh, M. Lingappa, E. Umar, S., ” Overview of the new bioinformatics virus goes from the front of next generation sequencing in genomics based on datamining”, Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems,2018, DOI: 10.1109/ICCONS.2017.8250670, EID: 2-s2.0-85047447491, URL:http://www.scopus.com/inward/record.url?Eid=2-s2.085047447491&partnerid=MN8TOARS [Google Scholar]
- “Subbarayudu Y. ” “Patil, S. ” “ Ramyasree, B. ” “ Praveen Kumar, C. ” “Geetha, G ”, Assort-EHR graph based semi-supervised classification algorithm for mining health records, Journal of Advanced Research in Dynamical and Control Systems 2017 . EID: 2-s2.0-85058439255 [Google Scholar]
- Umar, S., Sridevi, G., Subbarayudu Y., Nath, N.Y. “Datamining based multimode approach for estimating the risk under heart failure cases” , Journal of Theoretical and Applied Information Technology Volume 95, Issue 16, 31 August 2017, Pages 3879-3883 [Google Scholar]
- Yerragudipadu subbarayudu, alladi Sureshbabu “Distributed Multimodal Aspective on Topic Model Using Sentiment Analysis for Recognition of Public Health Surveillance” Expert Clouds and Applications, 16 July 2021, DOI: https://doi.org/10.1007/978-981-16-2126-0_38 Springer, Singapore Print ISBN 978-981-16-2125-3 Online ISBN 978-981-16-2126-0 [Google Scholar]
- Yerragudipadu Subbarayudu, Adithi Soppadandi, Shreya Vyamasani and Supriya Bandanadam1, The Distributed Deep Learning Paradigms for Detection of Weeds from Crops in Indian Agricultural Farms, E3S Web of Conferences 391, 01057 (2023) https://doi.org/10.1051/e3sconf/202339101057 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
- Subbarayudu Yerragudipadu, Vijendar Reddy Gurram, Navya Sri Rayapudi, Bhavana Bingi, Likhitha Gollapalli 1 and Ukritha peddapatlolla, An Efficient Novel Approach on Machine Learning Paradigmsfor Food Delivery Company through Demand Forecastıng in societal community, E3S Web of Conferences 391, 01089 (2023) https://doi.org/10.1051/e3sconf/202339101089 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
- Yerragudipadu Subbarayudu, G Vijendar Reddy, M Vamsi Krishna Raj, K Uday, MD Fasiuddin, and P Vishal, An efficient novel approach to E-commerce retail price optimization through machine learning, E3S Web of Conferences 391, 01104 (2023) https://doi.org/10.1051/e3sconf/202339101104 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
- Subbarayudu, Y., Sureshbabu, A. (2023). A distributed densely connected convolutional network approach for enhanced recognition of health-related topics: A societal analysis case study. Ingénierie des Systèmes d’Information, Vol. 28, No. 3, pp. 677-684. https://doi.org/10.18280/isi.280317 [Google Scholar]
- P. Gopal Krihsna, Yerragudipadu Subbarayudu, S. Sai Siva Kumar, D. Naveen, Abhishek Srivastava and K. Thangamani “IoT Sensor-based sustainable smart home management for human needs through Micro Controller” Published online: 06 October 2023 DOI: https://doi.org/10.1051/e3sconf/202343001079 [Google Scholar]
- P. Gopal Krihsna, Yerragudipadu Subbarayudu, S. Sai Siva Kumar, D. Naveen, Abhishek Srivastava and K. Thangamani IoT Sensor-based sustainable smart home management for human needs through Micro Controller Published online: 06 October 2023 DOI: https://doi.org/10.1051/e3sconf/202343001079 [Google Scholar]
- P. Gopal Krihsna, Yerragudipadu Subbarayudu, K. Mythili Rao, V. Jyoshna, Jumaid Aman and G. Vijendar Reddy An Efficient, Novel, and Sustainable IoT-Based Approach for Attendance Detection through RFID Module and IR Sensor Published online: 06 October 2023 DOI: https://doi.org/10.1051/e3sconf/202343001096 [Google Scholar]
- Subbarayudu Yerragudipadu, Alladi Sureshbabu, ”The Evaluation of Distributed topic models for recognition of health-related topics in social media through Machine Learning Paradigms” International Journal of Intelligent Systems and Applications in Engineering (IJISAE), https://ijisae.org ISSN:2147-6799,2023 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.