Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01106
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202439201106
Published online 18 March 2024
  1. I.H. Sarker, A.I. Khan, Y.B. Abushark, F. Alsolami. Internet of things (iot) security intelligence: a comprehensive overview, machine learning solutions and research directions. Mob. Netw. Appl., 28, 1, 296-312, (2023) [CrossRef] [Google Scholar]
  2. M.K. Kagita, N. Thilakarathne, T.R. Gadekallu, P.K.R. Maddikunta, S. Singh. A review on cybercrimes on the Internet of Things. Deep Learning for Security and Privacy Preservation in IoT, 83-98, (2022) [Google Scholar]
  3. A.J. Hintaw, S. Manickam, M.F. Aboalmaaly, S. Karuppayah. MQTT vulnerabilities, attack vectors and solutions in the internet of things (IoT). IETE J. Res., 69, 6, 3368-3397, (2023) [CrossRef] [Google Scholar]
  4. A. Heidari, M.A. Jabraeil Jamali. Internet of Things intrusion detection systems: A comprehensive review and future directions. Clust. Comput., 26, 6, 3753-3780, (2023) [CrossRef] [Google Scholar]
  5. S. Ali, Q. Li, A. Yousafzai. Blockchain and federated learning-based intrusion detection approaches for edge-enabled industrial IoT networks: A survey. Ad Hoc Netw., 152, 1-31, (2024) [Google Scholar]
  6. P. Prasant, S. Bhardwaj, M. Gupta, M. Srivastava, J. Singh, R.K. Maurya. Role of internet of things in protecting different wearable gadgets and materials. Mater. Today: Proc., 56, 3387-3393, (2022) [Google Scholar]
  7. L.M. Dias, J.F. Ramalho, T. Silvério, L. Fu, R.A. Ferreira, P.S. André. Smart optical sensors for Internet of things: Integration of temperature monitoring and customized security physical unclonable functions. IEEE Access, 10, 24433-24443, (2022) [CrossRef] [Google Scholar]
  8. Y. Otoum, D. Liu, A. Nayak. DL‐IDS: a deep learning–based intrusion detection framework for securing IoT. Trans. Emerg. Telecommun. Technol., 33, 3, 1-16, (2022) [Google Scholar]
  9. M. Burhan, H. Alam, A. Arsalan, R.A. Rehman, M. Anwar, M. Faheem, M.W. Ashraf. A comprehensive survey on the cooperation of fog computing paradigm-based iot applications: layered architecture, real-time security issues, and solutions. IEEE Access, 11, 73303-73329, (2023) [CrossRef] [Google Scholar]
  10. I. Martins, J.S. Resende, P.R. Sousa, S. Silva, L. Antunes, J. Gama. Host-based IDS: A review and open issues of an anomaly detection system in IoT. Future Gener. Comput. Syst., 133, 95-113, (2022) [CrossRef] [Google Scholar]
  11. A. Alsarhan, M. Alauthman, E.A. Alshdaifat, A.R. Al-Ghuwairi, A. Al-Dubai. Machine Learning-driven optimization for SVM-based intrusion detection system in vehicular ad hoc networks. J. Ambient Intell. Humaniz. Comput., 14, 5, 6113-6122, (2023) [CrossRef] [Google Scholar]
  12. A. Halbouni, T.S. Gunawan, M.H. Habaebi, M. Halbouni, M. Kartiwi, R. Ahmad. CNNLSTM: hybrid deep neural network for network intrusion detection system. IEEE Access, 10, 99837-99849, (2022) [CrossRef] [Google Scholar]
  13. R. Islam, M.K. Devnath, M.D. Samad, S.M.J. Al Kadry (2022). GGNB: Graph-based Gaussian naive Bayes intrusion detection system for CAN bus. Veh. Commun., 33, 1-27, (2022) [Google Scholar]
  14. M.H.L. Louk, B.A. Tama. Dual-IDS: A bagging-based gradient boosting decision tree model for network anomaly intrusion detection system. Expert Syst. Appl., 213, (2023) [Google Scholar]
  15. Z. Liu, Y. Shi. A hybrid IDS using GA-based feature selection method and random forest. Int. J. Mach. Learn. Comput, 12, 02, 43-50, (2022) [Google Scholar]
  16. M. Al-Fawa’reh, M. Al-Fayoumi, S. Nashwan, S. Fraihat. Cyber threat intelligence using PCA-DNN model to detect abnormal network behavior. Egypt. Inform. J., 23, 2, 173-185, (2022) [CrossRef] [Google Scholar]
  17. S. Subramani, M. Selvi. Multi-objective PSO based feature selection for intrusion detection in IoT based wireless sensor networks. Optik, 273, (2023) [Google Scholar]
  18. J.K. Samriya, R. Tiwari, X. Cheng, R.K. Singh, A. Shankar, M. Kumar (2022). Network intrusion detection using ACO-DNN model with DVFS based energy optimization in cloud framework. Sustain. Comput.: Inform. Syst., 35, (2022) [Google Scholar]
  19. M. Sarhan, S. Layeghy, N. Moustafa, M. Gallagher, M. Portmann. Feature extraction for machine learning-based intrusion detection in IoT networks. Digit Commun Netw., (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.