Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01101
Number of page(s) 10
DOI https://doi.org/10.1051/matecconf/202439201101
Published online 18 March 2024
  1. H. Dinkel et al., Text-based depression detection on sparse data, IEEE ACCESS. (2019). [Google Scholar]
  2. F. Cacheda et al., Early Detection of Depression: Social Network Analysis, journal of medical internet research, (2020). [Google Scholar]
  3. Lei Tong et al., Cost-sensitive Boosting Pruning Trees for depression detection on Twitter, IEEE (2020). [Google Scholar]
  4. Y. Shen et al., Automatic depression detection: an emotional audio-textual corpus and a gru/bilstm-based model, IEEE, (2022). [Google Scholar]
  5. Yıldırım et al., A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. & Applic., pp.1–12, (2018). [Google Scholar]
  6. Stober et al., Deep feature learning for EEG recordings. arXiv preprint arXiv:1511.04306, (2015). [Google Scholar]
  7. Acharya et al., Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, pp. 270–278, (2018). [CrossRef] [Google Scholar]
  8. Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Proces. Syst., (2012). [Google Scholar]
  9. Szegedy et al., Going deeper with convolutions, In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2015). [Google Scholar]
  10. Simonyan et al., Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, (2014). [Google Scholar]
  11. LeCun et al., Gradient-based learning applied to document recognition, Proc. IEEE 86, pp. 2278–2323, (1998). [Google Scholar]
  12. Bashivan et al., Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448, (2015). [Google Scholar]
  13. Talo et al., Application of deep transfer learning for automated brain abnormality classification using MR images, Cogn. Syst. Res., (2018). [Google Scholar]
  14. Acharya et al., Automated EEG analysis of epilepsy: A review, Knowledge-Based Syst, Vol. 45, pp. 147–165, (2013). [CrossRef] [Google Scholar]
  15. U. R. Acharya et al., Characterization of focal EEG signals: A review, Futur. Gener. Comput. Syst., (2019). [Google Scholar]
  16. S. Stober et al., Deep feature learning for EEG recordings, arXiv preprint arXiv:1511.04306, (2015). [Google Scholar]
  17. K. Chidananda et al., A Robust Multi Descriptor Fusion with One-Class CNN for Detecting Anomalies in Video Surveillance, International Journal of Safety and Security Engineering, Vol. 13, pp. 1143-1151, (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.