Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01092
Number of page(s) 6
DOI https://doi.org/10.1051/matecconf/202439201092
Published online 18 March 2024
  1. Ahmed, N., Rafiq, J. I., & Islam, M. R. (2020). Improved human action acknowledgment based on smartphone sensor information utilizing half breed include determination show. Sensors, 20(1). 10.3390/s20010317. [Google Scholar]
  2. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2020a). Profound learning for sensor-based human movement acknowledgment: diagram, challenges and openings. arXiv:2001.07416,. [Google Scholar]
  3. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2020b). Profound learning for sensorbased human activity recognition: diagram, challenges and openings,. 37(4). http://arxiv.org/abs/2001.07416. [Google Scholar]
  4. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2021). Profound learning for sensorbased human action acknowledgment: Outline, challenges, and openings. ACM Computing Overview, 54(4). 10.1145/3447744. [Google Scholar]
  5. Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., & Yu, Z. (2012). Sensor-based movement acknowledgment. IEEE Exchanges on Frameworks, Man and Artificial intelligence Portion C: Applications and Surveys, 42(6), 790–808. 10.1109/TSMCC.2012.2198883. 17 [Google Scholar]
  6. S. Gupta International Journal of Data Administration Information Experiences 1 (2021) 100046 [Google Scholar]
  7. Chen, Y., Zhong, K., Zhang, J., Sun, Q., & Zhao, X. (2016). LSTM systems for portable human action acknowledgment. In 2016 universal conference on counterfeit insights: Innovations and applications (pp. 50–53). [Google Scholar]
  8. Atlantis Press. Gani, M. O. (2017). A novel approach to complex human action acknowledgment,. [Google Scholar]
  9. Gao, J., Yang, J., Wang, G., & Li, M. (2016). A novel highlight extraction strategy for scene recognition based on Centered Convolutional Restricted Boltzmann Machines. Neurocomputing, 214(100), 708–717. 10.1016/j.neucom.2016.06.055. [CrossRef] [Google Scholar]
  10. Gao, X., Luo, H., Wang, Q., Zhao, F., Ye, L., & Zhang, Y. (2019). A human activity recognition algorithm based on stacking denoising autoencoder and lightGBM. Sensors, 19(4), 1–20. 10.3390/s19040947. [Google Scholar]
  11. Garg, R., Kiwelekar, A. W., Netak, L. D., & Bhate, S. S. (2021). Potential use-cases of natural language processing for a logistics organization. In Modern approaches in machine learning and cognitive science: A walkthrough (pp. 157–191). Springer. [CrossRef] [Google Scholar]
  12. Hussain, Z., Sheng, M., & Zhang, W. E. (2019). Different approaches for human sactivity recognition: A survey (pp. 1–28). http://arxiv.org/abs/1906.05074. van [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.