Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01073
Number of page(s) 10
DOI https://doi.org/10.1051/matecconf/202439201073
Published online 18 March 2024
  1. N. Schneiderman, G. Ironson, and S. D. Siegel, “Stress and health: Psychological, behavioral, and biological determinants,” Annu. Rev. Clin. Psychol., vol. 1, pp. 607–628, 2005, doi: 10.1146/annurev.clinpsy.1.102803.144141. [CrossRef] [Google Scholar]
  2. A. N. Vgontzas, S. Pejovic, and M. Karataraki, “Sleep, Sleep Disorders, and Stress,” Encycl. Stress, pp. 506–514, 2007, doi: 10.1016/B978-012373947-6.00349-4. [Google Scholar]
  3. Q. Bukhsh, A. Shahzad, and M. Nisa, “A study of learning stress and stress management strategies of the students of postgraduate level: A case study of Islamia university of Bahawalpur, Pakistan,” Procedia – Soc. Behav. Sci., vol. 30, pp. 182–186, 2011, doi: 10.1016/j.sbspro.2011.10.036. [CrossRef] [Google Scholar]
  4. G. Fink, “Stress: Concepts, Cognition, Emotion, and Behavior: Handbook of Stress Stress: Concepts, Definition, and History George Fink Florey Institute of Neuroscience and Mental Health,” no. October, 2017, [Online]. Available: https://www.researchgate.net/profile/GeorgeFink/publication/317026245_Stress_Concepts_Cognition_Emotion_and_Behavior_Handbook_of_Stress/links/59d17f1b0f7e9b4fd7fa28b3/Stress-Concepts-Cognition-Emotion-and-Behavior-Handbook-ofStress.pdf. [Google Scholar]
  5. A. M. Shahsavarani, E. A. M. Abadi, and M. H. Kalkhoran, “Stress Assessment and Development of a Primary Care of Psychology Service,” Int. J. Med. Rev., vol. 2, no. 2, pp. 230–241, 2014. [Google Scholar]
  6. A. Khademi, Y. El-Manzalawy, L. Master, O. M. Buxton, and V. G. Honavar, “Personalized sleep parameters estimation from actigraphy: A machine learning approach,” Nat. Sci. Sleep, vol. 11, pp. 387–399, 2019, doi: 10.2147/NSS.S220716. [CrossRef] [Google Scholar]
  7. L. Rachakonda, A. K. Bapatla, S. P. Mohanty, and E. Kougianos, “SaYoPillow: Blockchain-Integrated Privacy-Assured IoMT Framework for Stress Management Considering Sleeping Habits,” IEEE Trans. Consum. Electron., vol. 67, no. 1, pp. 20–29, 2021, doi: 10.1109/TCE.2020.3043683. [CrossRef] [Google Scholar]
  8. V. C. Magana and M. Munoz-Organero, “Reducing stress on habitual journeys,” 5th IEEE Int. Conf. Consum. Electron. – Berlin, ICCE-Berlin 2015, pp. 153–157, 2016, doi: 10.1109/ICCE-Berlin.2015.7391220. [Google Scholar]
  9. A. R. Subhani, W. Mumtaz, M. N. B. M. Saad, N. Kamel, and A. S. Malik, “Machine learning framework for the detection of mental stress at multiple levels,” IEEE Access, vol. 5, no. c, pp. 13545–13556, 2017, doi: 10.1109/ACCESS.2017.2723622. [CrossRef] [Google Scholar]
  10. E. Garcia-Ceja, M. Riegler, T. Nordgreen, P. Jakobsen, K. J. Oedegaard, and J. Tørresen, “Mental health monitoring with multimodal sensing and machine learning: A survey,” Pervasive Mob. Comput., vol. 51, pp. 1–26, 2018, doi: 10.1016/j.pmcj.2018.09.003. [CrossRef] [Google Scholar]
  11. F. Akhtar, M. B. Bin Heyat, J. P. Li, P. K. Patel, Rishipal, and B. Guragai, “Role of Machine Learning in Human Stress: A Review,” 2020 17th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process. ICCWAMTIP 2020, pp. 170–174, 2020, doi: 10.1109/ICCWAMTIP51612.2020.9317396. [Google Scholar]
  12. R. K. Nath, H. Thapliyal, A. Caban-Holt, and S. P. Mohanty, “Machine Learning Based Solutions for Real-Time Stress Monitoring,” IEEE Consum. Electron. Mag., vol. 9, no. 5, pp. 34–41, 2020, doi: 10.1109/MCE.2020.2993427. [CrossRef] [Google Scholar]
  13. N. Keshan, P. V. Parimi, and I. Bichindaritz, “Machine learning for stress detection from ECG signals in automobile drivers,” Proc. – 2015 IEEE Int. Conf. Big Data, IEEE Big Data 2015, pp. 2661–2669, 2015, doi: 10.1109/BigData.2015.7364066. [Google Scholar]
  14. A. Muaremi, A. Bexheti, F. Gravenhorst, B. Arnrich, and G. Troster, “Monitoring the impact of stress on the sleep patterns of pilgrims using wearable sensors,” 2014 IEEEEMBS Int. Conf. Biomed. Heal. Informatics, BHI 2014, pp. 185–188, 2014, doi: 10.1109/BHI.2014.6864335. [Google Scholar]
  15. Kaggle, https://www.kaggle.com/ (accessed: Feb. 27, 2022). [Google Scholar]
  16. A. Hassani, M. Y. Siadat, and S. Z. Fazlali, “Stress detection in rehabilitation training using wearable technology and machine learning,” PLoS One, vol. 15, no. 9, p. e0238971, Sep 2020, doi: 10.1371/journal.pone.0238971. [CrossRef] [Google Scholar]
  17. S. Lee, J. Lee, S. E. Lee, and K. S. Park, “Wearable Sensor-Based Stress Detection in Daily Life: A Systematic Review,” Sensors (Basel), vol. 21, no. 16, Aug 2021, doi: 10.3390/s21165629. [Google Scholar]
  18. A. P. James, J. A. M. Goffin, and B. R. Maharaj, “Deep learning techniques for detecting stress from heart rate and heart rate variability signals,” Comput. Methods Programs Biomed., vol. 205, Mar 2022, doi: 10.1016/j.cmpb.2021.106184. [Google Scholar]
  19. Z. Aung, S. Z. Yeoh, M. A. M. Aris, C. W. L. Kok, and S. P. Chong, “Application of deep learning for stress prediction using heart rate variability features,” Comput. Biol. Med., vol. 133, Mar 2022, doi: 10.1016/j.compbiomed.2021.104409. [Google Scholar]
  20. S. N. Jadhav, V. P. Patil, and M. D. Uplane, “Stress Detection Using Deep Learning and Wearable Device,” in 2022 12th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2022, doi: 10.1109/ICCCNT53921.2022.1032398. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.