Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01026 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/matecconf/202439201026 | |
Published online | 18 March 2024 |
- Cui Y, Wang LF, Ren JY. Multi-functional SiC/Al composites for aerospace applications. Chinese J Aeronaut 2008; 21(6): 578-84. [CrossRef] [Google Scholar]
- Natarajan S, Naraynasamy R, Kumaresh B, Dinesh G, Kumar BA, Sivapradad K. Sliding wear behavior of Al 6063/TiB2 in situ composites at elevated temperatures .Mater Design 2009; 30(7): 2521-31. [Google Scholar]
- Tham LM, Gupta M, Cheng L. Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium-silicon carbide composites. Acta Mater 2001; 49(16): 3243-53. [CrossRef] [Google Scholar]
- Irfan A, Zhang Q, Xiang M. Corrosion inhibition of SiCp/5A06 aluminum metal matrix composite by ceriumconversion treatment. Chinese J Aeronaut 2009; 22(6): 670-6. [CrossRef] [Google Scholar]
- Ai TT. Microstructure and mechanical properties of in-situ synthesized Al2O3/TiAl composites. Chinese J Aeronaut 2008; 21(6): 559-64. [CrossRef] [Google Scholar]
- Lu L, Lai MO, Su Y, Teo HL, Feng CF. In situ TiB2 reinforced Al alloy composites. ScriptaMater 2001; 45(9): 1017-23. [Google Scholar]
- Tayeh T, Douin J, Jouannigot S, Zakhour M, Nakhl M, Silvain J, Bobet J. Hardness and Young’s modulus behavior of Al composites renforced by nanometric TiB2 elaborated by mechanosysnthesis. Mater Sci Eng A-Struct 2014; 591: 1-8. [CrossRef] [Google Scholar]
- Wang M, Chen D, Chen Z, Wu Y, Wang F, Ma N, Wang H. Mechanical properties of in-situ TiB2/A356 composites. Mater Sci Eng A-Struct 2014; 590: 246-54. [CrossRef] [Google Scholar]
- Pramanik A, Zhang LC, Arsecularatne JA. An FEM investigation into the behavior of metal matrix composites: Tool-particle interaction during orthogonal cutting. Int J Mach ToolManu 2007; 47(10): 1497-506. [CrossRef] [Google Scholar]
- El-Gallab M, Sklad M. Machining of Al/SiC particulate metal-matrix composites Part I: Tool performance. J Mater Process Tech 1998; 83(1-3): 151-8. [CrossRef] [Google Scholar]
- Ding X, Liew WYH, Liu XD. Evaluation of machining performance of MMC with PCBN and PCD tools. Wear 2005; 259(7-12): 1225-34. [CrossRef] [Google Scholar]
- Bhusham PK, Kumar S, Das S. Effect of machining parameters on surface roughness and tool wear for 7075 Alalloy SiC composite. Int J Adv Manuf Tech 2010; 50(5): 45969. [Google Scholar]
- El-Gallab M, Sklad M. Machining of Al/SiC particulate metal-matrix composites Part II: Workpiece surface integrity. J Mater Process Tech 1998; 83(1-3): 277–85. [CrossRef] [Google Scholar]
- Muthukrishnan N, Murugan M, Rao KP. Machinability issues in turning of Al-SiC (10p) metal matrix composites. J Mater Process Tech 2008; 39(3): 211-8. [Google Scholar]
- Joshi SS, Ramakrishnan N, Ramakrishnan P. Analysis of chip breaking during orthogonal machining of Al/SiCp composites. J Mater Process Tech 1999; 88(1-3): 90-6. [CrossRef] [Google Scholar]
- Pramanik A, Zhang LC, Arsecularatne JA. Machining of metal matrix composites: Effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tool Manu 2008; 48(15): 1613-25. [CrossRef] [Google Scholar]
- Siva SBV, Ganguly RI, Srinivasarao G, Sahoo KL. Machinability of Aluminum metal matrix composite reinforced with in-situ ceramic composite developed from mines waste colliery shale. Mater Manuf Process 2013; 28(10): 1082-9. [CrossRef] [Google Scholar]
- Li Z, Ding WF, Shen L, Xi XX, Fu YC. Comparative investigation on high-speed grinding of TiCp/Ti-6Al-4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels. Chinese J Aeronaut 2016; 29(5): 1414-24. [CrossRef] [Google Scholar]
- Anandakrishnan V, Mahamani A. Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061-TiB2 in situ metal matrix composites produced by flux-assisted synthesis. Int J AdvManufTech 2011; 55(1): 65-73. [Google Scholar]
- Senthil P, Selvaraj T, Sivaprasad K. Influence of turning parameters on the machinability of homogenized Al-Cu/TiB2 in situ metal matrix composites. Int J Adv ManufTech 2013; 67(5): 1589-96. [CrossRef] [Google Scholar]
- Ding WF, Zhao B, Xu JH, Yang CY, Fu YC, Su HH. Grinding behavior and surface appearance of (TiCp+TiBw)/Ti-6Al-4V titanium matrix composites. Chinese J Aeronaut 2014; 27(5): 1334-42. [CrossRef] [Google Scholar]
- Jiang RS, Wang WH, Song GD, Wang ZQ. Experimental investigation on machinability of in situ formed TiB2 particles reinforced Al MMCs. Journal of Manufacturing Processes 2016; 23: 249-57. [CrossRef] [Google Scholar]
- Xiong YF, Wang WH, Jiang RS, Lin KY, Song GD. Tool wear mechanisms for milling in situ TiB2 particle-reinforced Al matrix composites. Int J Adv Manuf Tech 2016; 86(9): 3517-26. [CrossRef] [Google Scholar]
- Xiong YF, Wang WH, Jiang R, Lin KY, Song GD. Surface integrity of milling in-situ TiB2 particle reinforced Al matrix composites. Int J Refract Met H 2016; 54: 407-16. [CrossRef] [Google Scholar]
- Palanikumar K, Karthikeyan R. Optimal machining conditions for turning of particulate metal matrix composites using Taguchi and response surface methodologies. Mach Sci Technol 2006; 10(4): 417-33. [CrossRef] [Google Scholar]
- Palanikumar K, Muthukrishnan N, Hariprasad KS. Surface roughness parameters optimization in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function. Mach Sci Technol 2008; 12(4): 529-45. [CrossRef] [Google Scholar]
- Sahoo AK, Pradhan S. Modeling and optimization of Al/SiCp MMC machining using Taguchi approach. Measurement 2013; 46(9): 3064-72. [CrossRef] [Google Scholar]
- Muthukrishnan N, Davim JP. Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Tech 2009; 209(1): 225-32. [CrossRef] [Google Scholar]
- Ramanujam R, Muthukrishnan N, Raju R. Optimization of cutting parameters for turning Al-SiC(10p) MMCusing ANOVA and grey relational analysis. Int J Precis Eng Man 2011; 12(4): 651-6. [CrossRef] [Google Scholar]
- Kishore DSC, Rao KP, Mahamani A. Investigation of cutting force, surface roughness and flank wear in turning of In-situ Al6061-TiC metal matrix composite. Procedia Materials Science 2014; 6: 1040-50. [CrossRef] [Google Scholar]
- Kishore DSC, Rao KP, Ramesh A. Optimization of machining parameters for improving cutting force and surface roughness in turning of Al6061 –TiC in-situ metal matrix composites by using Taguchi method. Mater Today 2015; 2(4-5): 3075-83. [Google Scholar]
- Xavior MA, Adithan M. Determining the influence of cutting fluids on tool wear and surface roughness duringturning of AISI 304 austenitic stainless steel. J Mater Process Tech 2009; 209(2): 900-9. [CrossRef] [Google Scholar]
- Makadia AJ, Nanavati JI. Optimisation of machining parameters for turning operations based on response surface methodology. Measurement 2013; 46(4): 1521-9. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.