Open Access
Issue
MATEC Web Conf.
Volume 390, 2024
3rd International Scientific and Practical Conference “Energy-Optimal Technologies, Logistic and Safety on Transport” (EOT-2023)
Article Number 04005
Number of page(s) 7
Section Modeling and Computer Engineering, Modernization and Repair of Transport Facilities, Materials Science and Extension of the Resource of Structural Elements
DOI https://doi.org/10.1051/matecconf/202439004005
Published online 24 January 2024
  1. Kun, Li., Manlan Liu., Zuqing, Yu., Peng, Lan., Nianli, Lu.: Multibody system dynamic analysis and payload swing control of tower crane. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. Vol. 236. Issue 3. pp 407–421, (2022). [CrossRef] [Google Scholar]
  2. Loveykin, V., Pylypaka S., Kadykalo I. Dynamic analysis of the turning mechanism of a jib crane. Scientific Bulletin of the National University of Bioresources and Nature Management of Ukraine. Series: Technology and energy of agricultural industry. Kyiv. Issue 258., p. 192–202, (2017). [Google Scholar]
  3. Loveykin, V., Chovnyuk Yu., Dikteruk M., Kadykalo I. Conceptual foundations of dynamic analysis. Mining, construction, road and land reclamation. Kyiv. Issue 90, p. 19–23, (2017). [Google Scholar]
  4. Sun, N., Wu Y., Chen H., Fang Y. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments. Mechanical Systems and Signal Processing. vol. 102. pp 87–101, (2018). [CrossRef] [Google Scholar]
  5. He, J., Chen Y., Wu K., Zhao Y., Wang Z., Chen Z. Energy flow analysis of crane hoisting system and experimental of potential energy. Journal of Jilin University (Engineering and Technology Edition). vol. 48. issue 4. pp 1106–1113, (2018). [Google Scholar]
  6. Qian, Y., Fang Y., Lu B. Adaptive repetitive learning control for an offshore boom crane. Automatica. vol. 82. № 8. pp. 21–28, (2017). [CrossRef] [Google Scholar]
  7. Sanfilippo, F., Hatledal L., Styve A., Pettersen K., Zhang H. Integrated flexible maritime crane architecture for the offshore simulation centre AS (OSC): A flexible framework for alternative maritime crane control algorithms. IEEE J. Ocean. Eng. vol. 41. №. 2. pp. 450–461, (2016). [CrossRef] [Google Scholar]
  8. Kostikov, A. , Perig, A., Larichkin, O., Stadnik, A., Gribkov, E. Research Into Payload Swaying Reduction Through Cable Length Manipulation During Boom Crane Motion. FME Transactions. vol. 47, pp. 464–476, (2019). doi:10.5937/fmet1903464K. [CrossRef] [Google Scholar]
  9. Doçi, I., Hamidi, B., Shpetim, L. Dynamic analysis and control of jib crane in case of jib luffing motion using modelling and simulations. IFAC-Papers OnLine vol. 49-29. pp 163–168, (2016). [Google Scholar]
  10. Grigorov, O., Druzhynin E., Anishchenko G., Strizhak M., & Strizhak, V. Analysis of various approaches to modeling of dynamics of lifting-transport vehicles. International Journal of Engineering and Technologyv (UAE), 7(4). (2018). https://doi.org/10.14419/ijet.v7i4.3.19553. [Google Scholar]
  11. Perig, A., Stadnik A., Kostikov A. Research into 2D dynamics and control of small oscillations of a cross-beam during transportation by two overhead cranes and all. Hindawi Shock and Vibration. vol. 12 (1). pp 1–21, (2017). [Google Scholar]
  12. Fenglin, Y., Jiandong Li, Hao Y., Changkai X., Shining L. Numerical solution of critical force of n-step telescopic boom with superlift device. AIP Advances. vol. 21. Pp 1–12, (2023). [Google Scholar]
  13. Cibicik, A., Pedersen E., Egeland O. Dynamics of luffing motion of a flexible knuckle boom crane actuated by hydraulic cylinders. Mechanism and Machine Theory. vol 143. pp 1–12, (2020). [Google Scholar]
  14. Bilgin, B., Melek E. Heave and horizontal displacement and anti-sway control of payload during ship-to-ship load transfer with an offshore crane on very rough sea conditions. Ocean Engineering. vol 267 (1), (2023). [Google Scholar]
  15. Loveykin, V., Romasevich Yu., Stechno O. Optimization of the start-up mode of the mechanism for changing the departure of a load of a tower crane. Lifting and transport equipment. Odesa. Vol. 1 (62), pp. 4–18, (2020). [Google Scholar]
  16. Ye, J., Reppa R., Negenborn R. Backstepping Control of Heavy Lift Operations with Crane Vessels. IFAC PapersOnLine. vol. 53-2, pp 14704–14709, (2020). [CrossRef] [Google Scholar]
  17. Chalermpong, K., Hirata S., Yamaura H. Vibration reduction of the rotary crane with flexible boom. Mechanical Engineering Journal. vol. 9, no.5, pp 1–21, (2022). [Google Scholar]
  18. Adamiec-Wójcik, I., Drąg, Ł., Metelski M., Nadratowski, K., Wojciech S. A 3D model for static and dynamic analysis of an offshore knuckle boom crane. Applied Mathematical Modelling. vol. 66, pp 256–274, (2019). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.