Open Access
Issue |
MATEC Web Conf.
Volume 390, 2024
3rd International Scientific and Practical Conference “Energy-Optimal Technologies, Logistic and Safety on Transport” (EOT-2023)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 14 | |
Section | Energy-Efficient Technologies, Energy Management and Energy Efficiency in Transport | |
DOI | https://doi.org/10.1051/matecconf/202439001006 | |
Published online | 24 January 2024 |
- Kraciuk, J., Kacperska E., Łukasiewicz, K., & Pietrzak, P. (2022). InnovativeEnergy Technologies in Road Transport in Selected EU Countries. Energies, 15(16), 6030. [CrossRef] [Google Scholar]
- Meisel, K., Millinger M., Naumann K., Müller-Langer, F., Majer, S., & Thrän, D. (2020). Futurerenewable fuel mixes in transport in Germany under RED and II climate protection targets. Energies, 13(7), 1712. [CrossRef] [Google Scholar]
- Rahman, A., Farrok O., & Haque, M. M. (2022). Environmentalimpact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161, 112279. [CrossRef] [Google Scholar]
- Jacobson, M. Z., & Delucchi, M. A. (2011). Providingall global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy policy, 39(3), 1154–1169. [CrossRef] [Google Scholar]
- Maes, J., & Jacobs, S. (2017). Nature-based solutions for Europe’s sustainable development. Conservation letters, 10(1), 121–124. [CrossRef] [Google Scholar]
- García-Olivares, A., Ballabrera-Poy, J., García-Ladona, E., & Turiel, A. (2012). Aglobal renewable mix with proven technologies and common materials. Energy policy, 41, 561–574. [CrossRef] [Google Scholar]
- Lehmann, H., & Nowakowski, M. (2014). Archetypesof a 100% renewable energies power supply. Energy Procedia, 57, 1077–1085. [CrossRef] [Google Scholar]
- Sgouridis, S., Csala D., & Bardi, U. (2016). Thesower’s way: quantifying the narrowing net-energy pathways to a global energy transition. Environmental Research Letters, 11(9), 094009. [CrossRef] [Google Scholar]
- Breyer, C., Bogdanov D., Gulagi A., Aghahosseini A., Barbosa L. S., Koskinen, O., ... & Vainikka, P. (2017). Onthe role of solar photovoltaics in global energy transition scenarios. Progress in Photovoltaics: Research and Applications, 25(8), 727–745. [CrossRef] [Google Scholar]
- Banister, D. (2008). Thesustainable mobility paradigm. Transport policy, 15(2), 73–80. [CrossRef] [Google Scholar]
- Sperling, D., & Gordon, D. (2009). Twobillion cars: driving toward sustainability. Oxford University Press. [CrossRef] [Google Scholar]
- Ševčenko-Kozlovska, G., & Čižiūnienė, K. (2022). Theimpact of economic sustainability in the transport sector GDP on neighbouring of countries: Following the example of the baltic states. Sustainability, 14(6), 3326. [CrossRef] [Google Scholar]
- Sims, R., Schaeffer R., Creutzig F., et al. (2014). Transport. In Climate Change 2014: Mitigation of Climate Change. IPCC. [Google Scholar]
- Awan, A., Alnour M., Jahanger A., & Onwe, J. C. (2022). Dotechnological innovation and urbanization mitigate carbon dioxide emissions from the transport sector?. Technology in Society, 71, 102128. [CrossRef] [Google Scholar]
- Kucukvar, M., Cansev B., Egilmez G., Onat N. C., & Samadi, H. (2016). Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries. Applied energy, 184, 889–904. [CrossRef] [Google Scholar]
- Bilgen, S. E. L. Ç. U. K. (2014). Structureand environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, 890–902. [CrossRef] [Google Scholar]
- IEA, 2021. Net Zero by 2050, IEA, Paris https://www.iea.org/reports/net-zero-by-2050 [Google Scholar]
- Skjærseth, J. B. (2021). Towardsa European Green Deal: The evolution EU of climate and energy policy mixes. International Environmental Agreements: Politics, Law and Economics, 21(1), 25–41. [CrossRef] [Google Scholar]
- Dormido, L., Garrido I., L’Hotellerie-Fallois, P., & Santillán, J. (2023). Climatechange and sustainable growth: international initiatives and European policies. There is a Spanish version of this edition with the same number. [Google Scholar]
- IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II the to Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf. [Google Scholar]
- IPCC, 2022a: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III the to Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi:10.1017/9781009157926.003. [Google Scholar]
- Bogdanov, D., Ram M., Aghahosseini A., Gulagi A., Oyewo A. S., Child, M., ... & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy, 227, 120467. [CrossRef] [Google Scholar]
- Gielen, D., Boshell F., Saygin D., Bazilian M. D., Wagner, N., & Gorini, R. (2019). Therole of renewable energy in the global energy transformation. Energy strategy reviews, 24, 38–50. [CrossRef] [Google Scholar]
- Offer, G. J., Howey, D., Contestabile, M., Clague, R., & Brandon, N. P. (2010). Comparativeanalysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy policy, 38(1), 24–29. [CrossRef] [Google Scholar]
- Jacobsson, S., & Bergek, A. (2004). Transformingthe energy sector: the evolution of technological systems in renewable energy technology. Industrial and corporate change, 13(5), 815–849. [CrossRef] [Google Scholar]
- Sovacool, B. K. (2016). Howlong will it take? Conceptualizing the temporal dynamics of energy transitions. Energy research & social science, 13, 202–215. [CrossRef] [Google Scholar]
- Goldthau, A., & Sovacool, B. K. (2012). Theuniqueness of the energy security, justice, and governance problem. Energy policy, 41, 232–240. [CrossRef] [Google Scholar]
- Cherp, A., Vinichenko V., Jewell J., Brutschin E., & Sovacool, B. (2018). Integratingtechno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Research & Social Science, 37, 175–190. [CrossRef] [Google Scholar]
- Jacobson, M. Z., Howarth, R. W., Delucchi, M. A., Scobie, S. R., Barth, J. M., Dvorak, M. J., ... & Ingraffea, A. R. (2013). Examiningthe feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight. Energy Policy, 57, 585–601. [CrossRef] [Google Scholar]
- Shah, K. J., Pan, S. Y., Lee, I., Kim, H., You, Z., Zheng, J. M., & Chiang, P. C. (2021). Greentransportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. [CrossRef] [Google Scholar]
- Geels, F. W. (2012). Asocio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies. Journal of transport geography, 24, 471–482. [CrossRef] [Google Scholar]
- Lindstad, E., Ask T. Ø., Cariou, P., Eskeland, G. S., & Rialland, A. (2023). Wiseuse of renewable energy in transport. Transportation Research Part D: Transport and Environment, 119, 103713. [CrossRef] [Google Scholar]
- Li, Y., & Taghizadeh-Hesary, F. (2022). Theeconomic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 160, 112703. [CrossRef] [Google Scholar]
- Barke, A., Bley T., Thies C., Weckenborg C., & Spengler, T. S. (2022). Aresustainable aviation fuels a viable option for decarbonizing air transport in Europe? An environmental and economic sustainability assessment. Applied Sciences, 12(2), 597. [CrossRef] [Google Scholar]
- Brynolf, S., Hansson J., Anderson J. E., Skov, I. R., Wallington, T. J., Grahn, M., ... & Taljegård, M. (2022). Reviewof electrofuel feasibility—prospects for road, ocean, and air transport. Progress in Energy, 4(4), 042007. [CrossRef] [Google Scholar]
- Lewis, N. S. (2007). Towardcost-effective solar energy use. science, 315(5813), 798–801. [CrossRef] [Google Scholar]
- Mathiesen, B. V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P. A., Möller, B., ... & Hvelplund, F. K. (2015). SmartEnergy Systems for coherent 100% renewable energy and transport solutions. Applied energy, 145, 139–154. [CrossRef] [Google Scholar]
- Lund, H., Möller, B., Mathiesen, B. V., & Dyrelund, A. (2010). Therole of district heating in future renewable energy systems. Energy, 35(3), 1381–1390. [CrossRef] [Google Scholar]
- Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., ... & Allen, M. F. (2014). Environmentalimpacts of utility-scale solar energy. Renewable and sustainable energy reviews, 29, 766–779. [CrossRef] [Google Scholar]
- Nykvist, B., & Nilsson, M. (2015). Rapidlyfalling costs of battery packs for electric vehicles. Nature climate change, 5(4), 329–332. [CrossRef] [Google Scholar]
- IEA (2019). Global EV Outlook 2019. International Energy Agency. [Google Scholar]
- Demirbas, A. (2009). Biofuelssecuring the planet’s future energy needs. Energy conversion and management, 50(9), 2239–2249. [CrossRef] [Google Scholar]
- Schäfer, A. W., Barrett, S. R., Doyme, K., Dray, L. M., Gnadt, A. R., Self, R., ... & Torija, A. J. (2019). Technological, economic and environmental prospects of all-electric aircraft. Nature Energy, 4(2), 160–166. [Google Scholar]
- Harrison, G., & Thiel, C. (2017). Anexploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe. Technological Forecasting and Social Change, 114, 165–178. [CrossRef] [Google Scholar]
- Kester, J., Noel L., Rubens de, G. Z., & Sovacool, B. K. (2018). Policymechanisms to accelerate electric vehicle adoption: a qualitative review from the Nordic region. Renewable and Sustainable Energy Reviews, 94, 719–731. [CrossRef] [Google Scholar]
- Strupeit, L., & Palm, A. (2016). Overcomingbarriers to renewable energy diffusion: business models for customer-sited solar photovoltaics in Japan, Germany and the United States. Journal of Cleaner Production, 123, 124–136. [CrossRef] [Google Scholar]
- Schwanen, T., Lucas K., Akyelken N., Solsona D. C., Carrasco, J. A., & Neutens, T. (2015). Rethinkingthe links between social exclusion and transport disadvantage through the lens of social capital. Transportation Research Part A: Policy and Practice, 74, 123–135. [CrossRef] [Google Scholar]
- Banister, D., & Hickman, R. (2013). Transportfutures: Thinking the unthinkable. Transport Policy, 29, 283–293. [CrossRef] [Google Scholar]
- M. Tsangas, M. Jeguirim, L. Limousy, A. Zorpas, The application of analytical hierarchy process in combination with Pestel-SWOT analysis to assess the hydrocarbons sector in Cyprus, Energies 12(5) (2019), 791. [CrossRef] [Google Scholar]
- Tidikis, R.: Socialinių mokslų tyrimų metodologija. Vilnius (2003). [Google Scholar]
- Žydžiūnaitė, V.: Taikomųjų tyrimų metodologijos charakteristikos. Vilnius (2006). [Google Scholar]
- Jacobson, M. Z. (2009). Reviewof solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2(2), 148–173. [CrossRef] [Google Scholar]
- Sperling, D., & Cannon, J. S. (2010). Driving climate change: cutting carbon from transportation. Elsevier. [Google Scholar]
- Chester, M. V., & Horvath, A. (2009). Environmentalassessment of passenger transportation should include infrastructure and supply chains. Environmental research letters, 4(2), 024008. [CrossRef] [Google Scholar]
- Ajanovic, A., & Haas, R. (2021). Prospectsand impediments for hydrogen and fuel cell vehicles in the transport sector. International journal of hydrogen energy, 46(16), 10049–10058. [CrossRef] [Google Scholar]
- Sanguesa, J. A., Torres-Sanz, V., Garrido, P., Martinez, F. J., & Marquez-Barja, J. M. (2021). Areview on electric vehicles: Technologies and challenges. Smart Cities, 4(1), 372–404. [CrossRef] [Google Scholar]
- Singla, M. K., Nijhawan, P., & Oberoi, A. S. (2021). Hydrogenfuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research, 28, 15607–15626. [CrossRef] [Google Scholar]
- Kar, S. K., Bansal, R., & Harichandan, S. (2022). Anempirical study on intention to use hydrogen fuel cell vehicles in India. International Journal of Hydrogen Energy, 47(46), 19999–20015. [CrossRef] [Google Scholar]
- Zhou, H., Dai J., Chen X., Hu B., Wei H., & Cai, H. H. (2023). Understandinginnovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. International Journal of Hydrogen Energy. [Google Scholar]
- Kovač, A., Paranos, M., & Marciuš, D. (2021). Hydrogenin energy transition: A review. International Journal of Hydrogen Energy, 46(16), 10016–10035. [CrossRef] [Google Scholar]
- Dash, S. K., Chakraborty, S., Roccotelli, M., & Sahu, U. K. (2022). Hydrogenfuel for future mobility: Challenges and future aspects. Sustainability, 14(14), 8285. [CrossRef] [Google Scholar]
- Tran, M. K., Bhatti, A., Vrolyk, R., Wong, D., Panchal, S., Fowler, M., & Fraser, R. (2021). Areview of range extenders in battery electric vehicles: Current progress and future perspectives. World Electric Vehicle Journal, 12(2), 54. [CrossRef] [Google Scholar]
- Yusoff, M. N. A. M., Zulkifli, N. W. M., Sukiman, N. L., Chyuan, O. H., Hassan, M. H., Hasnul, M. H., ... & Zakaria, M. Z. (2021). Sustainabilityof palm biodiesel in transportation: a review on biofuel standard, policy and international collaboration between Malaysia and Colombia. Bioenergy research, 14, 43–60. [CrossRef] [Google Scholar]
- Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Productionof first and second generation biofuels: a comprehensive review. Renewable and sustainable energy reviews, 14(2), 578–597. [CrossRef] [Google Scholar]
- Nogueira, L. A. H., Souza, G. M., Cortez, L. A. B., & de Brito Cruz, C. H. (2020). Biofuelsfor transport. In Future Energy (pp. 173–197). Elsevier. [CrossRef] [Google Scholar]
- Gallagher, J., & Clarke, S. (2023). Energyefficient route prediction for solar powered vehicles. Green Energy and Intelligent Transportation, 2(1), 100063. [CrossRef] [Google Scholar]
- Ehsani, M. (2021). SustainableTransportation. In Electric, Hybrid, and Fuel Cell Vehicles (pp. 5–25). New York, NY: Springer New York. [Google Scholar]
- Chan, C. C. (2007). Thestate of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 704–718. [CrossRef] [Google Scholar]
- Lucas, K., & Jones, P. (2012). Socialimpacts and equity issues in transport: an introduction. Journal of Transport Geography, 21, 1–3. [CrossRef] [Google Scholar]
- Martens, K. (2016). Transportjustice: Designing fair transportation systems. Routledge. [CrossRef] [Google Scholar]
- Cass, N., Shove E., & Urry, J. (2005). Socialexclusion, mobility and access. The sociological review, 53(3), 539–555. [CrossRef] [Google Scholar]
- Barton, H., Grant M., & Guise, R. (2021). Shapingneighbourhoods: for local health and global sustainability. Routledge. [CrossRef] [Google Scholar]
- Cornwall, A. (2008). Unpacking‘Participation’: models, meanings and practices. Community development journal, 43(3), 269–283. [CrossRef] [Google Scholar]
- Mathiesen, B. V., Lund, H., & Karlsson, K. (2011). 100% Renewable energy systems, climate mitigation and economic growth. Applied energy, 88(2), 488–501. [CrossRef] [Google Scholar]
- International Labour Organization (ILO), 2020. https://www.ilo.org/global/publications/books/WCMS_745151/lang--en/index.htm [Google Scholar]
- Browne, D., & Ryan, L. (2011). Comparativeanalysis of evaluation techniques for transport policies. Environmental Impact Assessment Review, 31(3), 226–233. [CrossRef] [Google Scholar]
- Suzuki, H., Dastur A., Moffatt S., Yabuki N., & Maruyama, H. (2010). Eco2 Cities: Ecological cities as economic cities. World Bank Publications. [CrossRef] [Google Scholar]
- World Health Organization, https://www.who.int/health-topics/air-pollution#tab=tab_1 [Google Scholar]
- Kelly, F. J., & Fussell, J. C. (2015). Airpollution and public health: emerging hazards and improved understanding of risk. Environmental geochemistry and health, 37, 631–649. [CrossRef] [Google Scholar]
- Karthik, R., Behera R. R., Bera, R., & Panda, D. (2022). CanRenewable Energy Lead to Happiness?. Indian Journal of Health and Wellbeing, 13(3), 404–409. [Google Scholar]
- Mouratidis, K. (2021). Urbanplanning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities, 115, 103229. [CrossRef] [Google Scholar]
- Steg, L., & Gifford, R. (2005). Sustainabletransportation and quality of life. Journal of transport geography, 13(1), 59–69. [CrossRef] [Google Scholar]
- Ferreira, M. C., Costa, P. D., Abrantes, D., Hora, J., Felício, S., Coimbra, M., & Dias, T. G. (2022). Identifyingthe determinants and understanding their effect on the perception of safety, security, and comfort by pedestrians and cyclists: A systematic review. Transportation research part F: traffic psychology and behaviour, 91, 136–163. [CrossRef] [Google Scholar]
- Litman, T. (2016). Wellmeasured. Victoria, Boritish Columbia: Victoria Transport Policy Institute. [Google Scholar]
- Simplican, S. C., Leader, G., Kosciulek, J., & Leahy, M. (2015). Definingsocial inclusion of people with intellectual and developmental disabilities: An ecological model of social networks and community participation. Research in developmental disabilities, 38, 18–29. [CrossRef] [Google Scholar]
- Meerow, S., Pajouhesh P., & Miller, T. R. (2019). Socialequity in urban resilience planning. Local Environment, 24(9), 793–808. [CrossRef] [Google Scholar]
- Sparkman, G., Howe L., & Walton, G. (2021). Howsocial norms are often a barrier to addressing climate change but can be part of the solution. Behavioural Public Policy, 5(4), 528–555. [CrossRef] [Google Scholar]
- Sovacool, B. K., & Hess, D. J. (2017). Orderingtheories: Typologies and conceptual frameworks for sociotechnical change. Social studies of science, 47(5), 703–750. [CrossRef] [Google Scholar]
- Kuzemko, C. (2015). Politicising UK energy: What ‘speaking energy security’can do. In Tracing the Political (pp. 161–180). Policy Press. [Google Scholar]
- Bilenets, D., Ulianova H., & Vozniakovska, K. (2022). ThreeSeas Initiative and Ukrainian Seaports’ Prospects amid Russian Aggression. Lex Portus, 8, 48. [CrossRef] [Google Scholar]
- Balmaceda, M., & Prokip, A. (2021). TheDevelopment of Ukraine’s Energy Sector. From “the Ukraine” to Ukraine, 137. [Google Scholar]
- Lutsey, N., & Sperling, D. (2008). America’s bottom-up climate change mitigation policy. Energy policy, 36(2), 673–685. [CrossRef] [Google Scholar]
- Geoff, U. P. T. O. N. (2020). OECDMonitoring of the Energy Strategy of Ukraine until 2035. [Google Scholar]
- Wei, M., Patadia S., & Kammen, D. M. (2010). Puttingrenewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?. Energy policy, 38(2), 919–931. [CrossRef] [Google Scholar]
- Hackbarth, A., & Madlener, R. (2016). Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany. Transportation Research Part A: Policy and Practice, 85, 89–111. [CrossRef] [Google Scholar]
- Geshkov, M. (2015). Urbansprawl in eastern europe. The Sofia City example. Economic Alternatives, 2, 101–116. [Google Scholar]
- Pilkington, A., Dyerson R., & Tissier, O. (2002). Theelectric vehicle:: Patent data as indicators of technological development. World patent information, 24(1), 5–12. [CrossRef] [Google Scholar]
- Trypolska, G., Kurbatova T., Prokopenko O., Howaniec H., & Klapkiv, Y. (2022). Windand solar power plant end-of-life equipment: Prospects for management in Ukraine. Energies, 15(5), 1662. [CrossRef] [Google Scholar]
- Antoniuk, N., & Kulczycka, J. (2022). Themanagement of renewable energy resources for the energy security of Ukraine and Europe. Polityka Energetyczna, 25(4). [Google Scholar]
- Kudria, S., Ivanchenko I., Tuchynskyi B., Petrenko K., Karmazin O., & Riepkin, O. (2021). Resourcepotential for wind-hydrogen power in Ukraine. International Journal of Hydrogen Energy, 46(1), 157–168. [CrossRef] [Google Scholar]
- Wąs, A., Sulewski, P., Gerasymchuk, N., Stepasyuk, L., Krupin, V., Titenko, Z., & Pogodzińska, K. (2022). Thepotential of Ukrainian agriculture’s biomass to generate renewable energy in the context of climate and political challenges—the case of the Kyiv region. Energies, 15(18), 6547. [CrossRef] [Google Scholar]
- Kurbatova, T., Sotnyk I., Kubatko O., Gorbachova L., & Khrystiuk, B. (2022). Smallhydropower development in Ukraine under global climate change patterns: is state economic support sufficient?. International Journal of Environment and Sustainable Development, 21(4), 456–473. [CrossRef] [Google Scholar]
- Wołek, M., Wolański, M., Bartłomiejczyk, M., Wyszomirski, O., Grzelec, K., & Hebel, K. (2021). Ensuringsustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). Journal of Cleaner Production, 279, 123807. [CrossRef] [Google Scholar]
- Rodrigues, A. L., & Seixas, S. R. (2022). Battery-electric buses and their implementation barriers: Analysis and prospects for sustainability. Sustainable Energy Technologies and Assessments, 51, 101896. [CrossRef] [Google Scholar]
- Kucher, O., & Prokopchuk, L. (2018). Thedevelopment of the market of the renewable energy in Ukraine. In Renewable Energy Sources: Engineering, Technology, Innovation: ICORES 2017 (pp. 71–81). Springer International Publishing. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.