Open Access
Issue
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
Article Number 08001
Number of page(s) 21
Section AM Material and Part Characterisation
DOI https://doi.org/10.1051/matecconf/202338808001
Published online 15 December 2023
  1. A. Bandyopadhyay, Y. Zhang, S. Bose, Curr Opin Chem Eng, 28, 96–104 (2020) [CrossRef] [Google Scholar]
  2. T. Booysen, Microstructural effects on properties of additively manufactured Inconel 625 and 718, (M Eng, Cape Peninsula University of Technology, 2019) [Google Scholar]
  3. Y.L. Hu et al., Mater Des, 186 (2020) [Google Scholar]
  4. B.E. Carroll et al., Acta Mater, 108, 46–54 (2016) [CrossRef] [Google Scholar]
  5. L.E. Shoemaker, Alloys 625 and 725: Trends in properties and applications (TMS, Pittsburgh, PA, 2005) [Google Scholar]
  6. J. Dutkiewicz et al., Materials, 13, 21, 1–17 (2020) [Google Scholar]
  7. ASTM, Standard specification for additive manufacturing nickel alloy (UNS N06625) with powder bed fusion (ASTM, West Conshohocken, PA, 2014) [Google Scholar]
  8. D. Deng, Additively manufactured Inconel 718: Microstructures and mechanical properties (Licentiate thesis, Linköping University, 2018) [CrossRef] [Google Scholar]
  9. LPW, Carpenter Addit (2020), https://www.carpenteradditive.com/technical-library/ (accessed Apr. 26, 2020) [Google Scholar]
  10. M. Tlotleng, J Mater Eng Perform, 28, 2, 701–708 (2019) [CrossRef] [Google Scholar]
  11. A. Ali, Y.W. Chiang, R.M. Santos, Miner, 12, 2 (2022) [Google Scholar]
  12. R.F. Ashton, R.P. Wesley, C.R. Dixon, Weld Res Suppl, 3, 95–98 (1975) [Google Scholar]
  13. J.F. Rudy, E.J. Rupert, Weld J (NY), 49, 7, 322s–336s (1970) [Google Scholar]
  14. W.J. Sames, Additive manufacturing of Inconel 718 using electron beam melting; mechanical properties; post-processing; processing (PhD, Texas A&M University, 2015) [Google Scholar]
  15. J.S. Zuback, T. DebRoy, MDPI, 11, 11 (2018) [Google Scholar]
  16. R.E. Smallman, A.H.W. Ngan, Physical metallurgy and advanced materials engineering, 7th ed (Elsevier, 2011) [Google Scholar]
  17. A. Du Plessis, Addit Manuf, 30, 100871 (2019) [Google Scholar]
  18. T. Vilaro, C. Colin, J.D. Bartout, Metall Mater Trans A Phys Metall Mater Sci, 42, 10 (2011) [Google Scholar]
  19. A. Dass, A. Moridi, Coatings. 1–26 (2019) [Google Scholar]
  20. B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater, 87, 309–320 (2015) [CrossRef] [Google Scholar]
  21. H. Gong, K. Rafi, H. Gu, T. Starr, B. Stucker, Addit Manuf, 1-4, 87–98 (2014) [Google Scholar]
  22. A. Anam, Microstructure and mechanical properties of selective laser melted superalloy Inconel 625 (PhD, University of Louisville, 2018) [Google Scholar]
  23. N. Ahmed, I. Barsoum, G. Haidemenopoulos, and R. K. A. Al-Rub, J Manuf Process, 75, 415–434 (2022) [CrossRef] [Google Scholar]
  24. O. Sanchez-Mata, X. Wang, J. Muñiz-Lerma, S. Atabay, M. Attarian Shandiz, M. Brochu, J Alloys Compd, 865, 158868 (2021) [CrossRef] [Google Scholar]
  25. C. Tan, K. Zhou, M. Kuang, W. Ma, T. Kuang, Sci Technol Adv Mater, 19, 1, 746–758 (2018) [CrossRef] [Google Scholar]
  26. X. Guo, P. He, & K. Xu, P.Y. Chen, B. Chen, S.B. Huo, Weld World, 65, 825–832 (2021) [CrossRef] [Google Scholar]
  27. J.N. DuPont, J.C. Lippold, S.D. Kiser, Welding metallurgy and weldability of nickelbase alloys (John Wiley & Sons, Hoboken, NJ, 2009) [CrossRef] [Google Scholar]
  28. ASTM, Standard specification for additive manufacturing nickel alloy (UNS N07718) with powder bed fusion F3055 (ASTM, West Conshohocken, PA, 2014) [Google Scholar]
  29. H. Osterman, V. Antes, Critical melting points and reference data for vacuum heat treating (Solar Atmospheres Inc, Souderton, PA, 2010), https://solarmfg.com/wp-content/uploads/2011/01/Critical-Melting-Point1.pdf (accessed Nov. 08, 2022) [Google Scholar]
  30. C. Pauzon, E. Hryha, P. Forêt, L. Nyborg, Mater Des, 179 (2019) [Google Scholar]
  31. S. Das, Adv Eng Mater, 5, 10, 701–711 (2003) [CrossRef] [Google Scholar]
  32. F. Azarmi, J. Saaedi, T.W. Coyle, J. Mostaghimi, Adv Eng Mater, 10, 5, 459–465 (2008) [CrossRef] [Google Scholar]
  33. Y. Gao, M. Zhou, Appl Sci, 8, 12 (2018) [Google Scholar]
  34. A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer, M. Chmielus, Acta Mater, 124 (2017) [Google Scholar]
  35. A. Gamon et al., Results Mater, 12 (2021) [Google Scholar]
  36. G. Marchese, A. Aversa, E. Bassini, Metals, 11, 6, 929 (2021) [CrossRef] [Google Scholar]
  37. H. Wong, K. Dawson, G.A. Ravi, L. Howlett, R.O. Jones, C.J. Sutcliffe, 105, 2891- 2906 (2019) [Google Scholar]
  38. N.A. Kistler, D.J. Corbin, A.R. Nassar, E.W. Reutzel, A.M. Beese, J Mater Process Technol, 264, 172–181 (2019) [CrossRef] [Google Scholar]
  39. N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, Addit Manuf, 8, 12–35 (2015) [Google Scholar]
  40. C. Zhong, T. Biermann, A. Gasser, R. Poprawe, J Laser Appl, 27 (2015) [Google Scholar]
  41. S.J.C. Pleass, Addit Manuf, 24, 419–431 (2018) [Google Scholar]
  42. M.N. Ahsan, R. Bradley, A.J. Pinkerton, J Laser Appl, 23, 2 (2011) [CrossRef] [Google Scholar]
  43. Y.N. Zhang, X. Cao, P. Wanjara, M. Medraj, Fiber laser deposition of Inconel 718 using powders, in Materials Science and Technology Conference and Exhibition (2013) [Google Scholar]
  44. R. Dawes, J. Bowerman, R. Treplenton, Johnson Matthey Technol Rev, 59, 3, 243–256 (2015) [CrossRef] [Google Scholar]
  45. X. Wang, X. Gong, K. Chou, Review on powder-bed laser additive manufacturing of Inconel 718 parts, in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2017) [Google Scholar]
  46. W.E. King et al., Appl Phys Rev, 2, 4 (2015) [Google Scholar]
  47. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int Mater Rev, 61, 5, 315–360 (2016) [CrossRef] [Google Scholar]
  48. A.R. Nassar, M.A. Gundermann, E.W. Reutzel, P. Guerrier, M.H. Krane, M.J. Weldon, Sci Rep, 9, 1 (2019) [PubMed] [Google Scholar]
  49. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater, 108, 36–45 (2016) [CrossRef] [Google Scholar]
  50. Z. Li et al., Micromachines, 13, 8 (2022) [Google Scholar]
  51. M. Liu, A. Kumar, S. Bukkapatnam, M. Kuttolamadom, Procedia Manuf, 53, 507–518 (2021) [CrossRef] [Google Scholar]
  52. Q. Jia, D. Gu, J Alloys Compd, 585, 713–721 (2014) [CrossRef] [Google Scholar]
  53. S. Cooke, K. Ahmadi, S. Willerth, R. Herring, J Manuf Processes, 57, 978–1003 (2020) [CrossRef] [Google Scholar]
  54. B. Zhang, Y. Li, Q. Bai, Chin J Mech Eng (Eng Ed), 30, 515–527 (2017) [CrossRef] [Google Scholar]
  55. Metal A.M., Hot isostatic pressing: Improving quality and performance in AM, https://www.metal-am.com/articles/hot-isostatic-pressing-improving-quality-and-performance-in-3d-printing/ (accessed May 05, 2023) [Google Scholar]
  56. S. Götelid et al., Rapid Prototyp J, 27, 9, 1617–1632 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.