Open Access
Issue
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
Article Number 07018
Number of page(s) 8
Section Computational & Data-driven Modelling
DOI https://doi.org/10.1051/matecconf/202338807018
Published online 15 December 2023
  1. J. Mohd, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des., 56, 1078–1113 (2014) [CrossRef] [Google Scholar]
  2. R. Mahlangu, M. J. Phasha, H. R. Chauke, and P. E. Ngoepe, “Structural, elastic and electronic properties of equiatomic PtTi as potential high-temperature shape memory alloy,” Intermetallics, 33, 27–32 (2013) [CrossRef] [Google Scholar]
  3. R. W. Fonda, H. N. Jones, and R. A. Vandermeer, “The shape memory effect in equiatomic TaRu and NbRu alloys,” Scr. Mater., 39, 8, 1031–1037 (1998) [CrossRef] [Google Scholar]
  4. Y. Yamabe-Mitarai, R. Arockiakumar, A. Wadood, K.S. Suresh, T. Kitashima, T. Hara, M. Shimojo, W. Tasaki, M. Takahashi, S. Takahashi, H. Hosoda, “Ti(Pt, Pd, Au) based high temperature shape memory alloys,” Mater. Today Proc., 2, 517–522 (2015) [Google Scholar]
  5. C. L. Tan, W. Cai, and X. H. Tian, “Combined experimental and theoretical study on the effect of Nb content on martensitic transformation of NbRu shape memory alloys,” Chinese Phys. B, 19, 3 (2010) [Google Scholar]
  6. G. S. Firstov, T. A. Kosorukova, Y. N. Koval, and P. A. Verhovlyuk, “Directions for High-Temperature Shape Memory Alloys Improvement: Straight Way to High- Entropy Materials?,” Shape Mem. Superelasticity, 1, 4, 400–407 (2015) [CrossRef] [Google Scholar]
  7. C. Tan, W. Cai, and X. Tian, “Structural, electronic and elastic properties of NbRu high-temperature shape memory alloys,” Scr. Mater., 56, 7, 625–628 (2007) [CrossRef] [Google Scholar]
  8. D. Nkomo and M. Phasha, “The SCF Convergence criteria for the ab initio calculations of elastic properties of single-crystal B2 ZrPd phase,” 6th Int. Conf. Mater. Eng. Nanotechnol., (2022) [Google Scholar]
  9. C. L. Tan, X. H. Tian, and W. Cai, “Effect of Fe on martensitic transformation of NbRu high-temperature shape memory alloys: Experimental and theoretical study,” Chinese Phys. Lett., 25, 9, 3372–3374 (2008) [CrossRef] [Google Scholar]
  10. M. Y. Benarchid, N. David, J. M. Fiorani, M. Vilasi, and T. Benlaharche, “Enthalpies of formation of Nb-Ru and Nb-Ru-Al alloys,” Thermochim. Acta, 482, 1-2, 39–41 (2009) [CrossRef] [Google Scholar]
  11. K. Otsuka and X. Ren, “Physical metallurgy of Ti-Ni-based shape memory alloys,” Prog. Mater. Sci., 50, 5, 511–678 (2005) [CrossRef] [Google Scholar]
  12. M. Ahlers, “The martensitic transformation in the Cu-Zn based shape memory alloys as a tool for the evaluation of transformation mechanisms and phase stabilities,” Mater. Sci. Eng. A, 481, 1, 500–503 (2008) [CrossRef] [Google Scholar]
  13. K. Otsuka, C. M. Wayman, K. Nakai, H. Sakamoto, and K. Shimizu, “Superelasticity effects and stress-induced martensitic transformations in CuAlNi alloys,” Acta Metall., 24, 3, 207–226 (1976) [CrossRef] [Google Scholar]
  14. W. Cai, Y. F. Zheng, X. Meng, and L. C. Zhao, “Superelasticity in TiNi Alloys and Its Applications in Smart Systems,” Mater. Sci. Forum, 475-479, 1915–1920, (2005) [CrossRef] [Google Scholar]
  15. C. Y. Nien, H. K. Wang, C. H. Chen, S. Ii, S. K. Wu, and C. H. Hsueh, “Superelasticity of TiNi-based shape memory alloys at micro/nanoscale,” J. Mater. Res., 29, 22, 2717–2726 (2014) [CrossRef] [Google Scholar]
  16. K. G. Vishnu and A. Strachan, “Phase stability and transformations in NiTi from density functional theory calculations,” Acta Mater., 58, 3, 745–752 (2010) [CrossRef] [Google Scholar]
  17. A.M. Manzoni, A. Denquin, P. Vermaut, F. Prima, I. Puente-Orench, C. Pauly, F. Mücklich, R.A. Portier, “Constrained hierarchical twinning in Ru-based high temperature shape memory alloys,” Acta Mater., 111, 283–296 (2016) [CrossRef] [Google Scholar]
  18. R. John and B. Merlin, “Theoretical Investigation of Structural, Electronic, and Mechanical Properties of Two Dimensional C, Si, Ge, Sn,” Cryst. Struct. Theory Appl., 05, 03, 43–55 (2016) [Google Scholar]
  19. S. J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, "First principles methods using CASTEP," Zeitschrift fur Krist., 220, 5-6, 567–570 (2005) [Google Scholar]
  20. W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., 140, 4A, 1133–1138 (1965) [Google Scholar]
  21. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 78, 7, 1396–1396 (1997) [NASA ADS] [CrossRef] [Google Scholar]
  22. V. A. Skripnyak, V. V. Skripnyak, E. G. Skripnyak, and N. V. Skripnyak, “Modelling of the mechanical response of Zr-Nb and Ti-Nb alloys in a wide temperature range,” Int. J. Mech. Mater. Des., 16, 1, 215–224 (2020) [CrossRef] [Google Scholar]
  23. M. Bönisch, A. Panigrahi, M. Stoica, M. Calih, E. Ahrens, M. Zehetbauer, W. Skrotzki, J. Eckert, “Giant thermal expansion and α-precipitation pathways in Ti- Alloys,” Nat. Commun., 8, 1, 1–9 (2017) [CrossRef] [Google Scholar]
  24. M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki, J. Eckert, “Thermal stability and phase transformations of martensitic Ti- Nb alloys,” Sci. Technol. Adv. Mater., 14, 5 (2013) [Google Scholar]
  25. G. Fernando, R. Watson, and M. Weinert, “Heats of formation of transition-metal alloys: Full-potential approach and the Pt-Ti system,” Phys. Rev. B - Condens. Matter Mater. Phys., 45, 15, 8233 (1992) [CrossRef] [Google Scholar]
  26. J. Murray, “The Ru-Ti ( Ruthenium-Titanium ) System,” Bull. Alloy Phase Diagrams, 3, 2, 216–221 (1982) [CrossRef] [Google Scholar]
  27. W. Xing, X. Chen, D. Li, Y. Li, C.L. Fu, S.V. Meschel, X. Ding, "First-principles studies of structural stabilities and enthalpies of formation of refractory intermetallics: TM and TM 3 (T = Ti, Zr, Hf; M = Ru, Rh, Pd, Os, Ir, Pt)," Intermetallics, 28, 16–24 (2012) [CrossRef] [Google Scholar]
  28. G. Ghosh and G. B. Olson, “Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results,” Acta Mater., 55, 10, 3281–3303 (2007) [CrossRef] [Google Scholar]
  29. S. M. Shapiro, G. Xu, G. Gu, J. Gardner, and R. W. Fonda, “Lattice dynamics of the high temperature shape memory alloy Nb-Ru,” 73, 21, p214114 (2006) [Google Scholar]
  30. B. H. Chen and H. F. Franzen, “High temperature X-ray diffraction and Landau theory investigation of phase transitions in NbRu1 + x and RhTi,” J. Less-Common Met., 153, 2, 13–19 (1989) [Google Scholar]
  31. G. Borzone, R. Raggio, and R. Ferro, “Comments on intermetallic thermochemistry,” J. Min. Metall. Sect. B Metall., 38, 3-4, 249–272 (2002) [CrossRef] [Google Scholar]
  32. N. Hatcher, O. Y. Kontsevoi, and A. J. Freeman, “Martensitic transformation path of NiTi,” Phys. Rev. B - Condens. Matter Mater. Phys., 79, 2, 2–5 (2009) [CrossRef] [Google Scholar]
  33. J. C. Gachon, M. Notin, and J. Hertz, "The enthalpy of mixing of the intermediate phases in the systems FeTi, CoTi, and NiTi by direct reaction calorimetry," Thermochim. Acta, 48, 1-2, 155–164 (1981) [CrossRef] [Google Scholar]
  34. N. Hatcher, O. Y. Kontsevoi, and A. J. Freeman, “Role of elastic and shear stabilities in the martensitic transformation path of NiTi,” Phys. Rev. B - Condens. Matter Mater. Phys., 80, 14 (2009) [CrossRef] [Google Scholar]
  35. M. J. Mehl, D. J. Singh, and D. A. Papaconstantopoulos, “Properties of ordered intermetallic alloys: first-principles and approximate methods,” Mater. Sci. Eng. A, 170, 1-2, 49–57 (1993) [CrossRef] [Google Scholar]
  36. J. Lu, Q. Hu, and R. Yang, “A comparative study of elastic constants of NiTi and NiAl alloys from first-principle calculations,” J. Mater. Sci. Technol., 25, 2, 215–218 (2009) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.