Open Access
Issue |
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 17 | |
Section | Product Design and Development | |
DOI | https://doi.org/10.1051/matecconf/202338805006 | |
Published online | 15 December 2023 |
- C.I. Bernäcker, Hydrogen from production, transport and storage to use, Fraunhofer IFAM. (2023). https://www.ifam.fraunhofer.de/en/industries/Energy_Technologies/hydrogen-production-transport-storage-use.html (accessed June 9, 2023). [Google Scholar]
- M. Liu, Z. Yao, J. Gu, C. Li, X. Huang, L. Zhang, Z. Huang, M. Fan, Issues and opportunities facing hydrolytic hydrogen production materials, Chem. Eng. J. 461 (2023) 141918. https://doi.org/10.1016/j.cej.2023.141918. [CrossRef] [Google Scholar]
- S.Z. Alsheheri, Nanocomposites containing titanium dioxide for environmental remediation, Des. Monomers Polym. 24 (2021) 22–45. https://doi.org/10.1080/15685551.2021.1876322. [CrossRef] [Google Scholar]
- A. Fujishima, X. Zhang, D. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582. https://doi.org/10.1016/j.surfrep.2008.10.001. [CrossRef] [Google Scholar]
- H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, K. Domen, Photocatalytic solar hydrogen production from water on a 100-m2 scale, Nat. 2021 5987880. 598 (2021) 304–307. https://doi.org/10.1038/s41586-021-03907-3. [Google Scholar]
- C. Yang, Z. Wang, T. Lin, H. Yin, X. Lü, D. Wan, T. Xu, C. Zheng, J. Lin, F. Huang, X. Xie, M. Jiang, Core-shell nanostructured “black” Rutile Titania as excellent catalyst for hydrogen production enhanced by sulfur doping, J. Am. Chem. Soc. 135 (2013) 17831–17838. https://doi.org/10.1021/JA4076748/SUPPL_FILE/JA4076748_SI_001.PDF. [CrossRef] [Google Scholar]
- S. Du, J. Lian, F. Zhang, Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications, Trans. Tianjin Univ. 2021 281. 28 (2021) 33–52. https://doi.org/10.1007/S12209-021-00303-W. [Google Scholar]
- L. Li, J. Yan, T. Wang, Z.J. Zhao, J. Zhang, J. Gong, N. Guan, Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production, Nat. Commun. 6 (2015). https://doi.org/10.1038/ncomms6881. [Google Scholar]
- P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: Synthesis and applications, Angew. Chemie - Int. Ed. 50 (2011) 2904–2939. https://doi.org/10.1002/anie.201001374. [CrossRef] [Google Scholar]
- X. Li, Y. Xue, R. Dehoff, C. Tsouris, P. Taboada-Serrano, Hierarchically-Structured Ti/TiO2 Electrode for Hydrogen Evolution Synthesized via 3D Printing and Anodization, J. Energy Power Technol. 2 (2020) 1–16. https://doi.org/10.21926/jept.2002007. [CrossRef] [Google Scholar]
- Z. Xu, M. Yin, J. Sun, G. Ding, L. Lu, P. Chang, X. Chen, D. Li, 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting, Nanotechnology. 27 (2016) 115401. https://doi.org/10.1088/0957-4484/27/11/115401. [CrossRef] [Google Scholar]
- C.Y. Lee, A.C. Taylor, S. Beirne, G.G. Wallace, 3D-Printed Conical Arrays of TiO2 Electrodes for Enhanced Photoelectrochemical Water Splitting, Adv. Energy Mater. 7 (2017). https://doi.org/10.1002/aenm.201701060. [Google Scholar]
- K. Indira, U.K. Mudali, T. Nishimura, N. Rajendran, A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications, J. Bio- TriboCorrosion 2015 14. 1 (2015) 1–22. https://doi.org/10.1007/S40735-015-0024-X. [Google Scholar]
- P. Schmuki, Rudolf Zahradnik Lecture Series. Patrik Schmuki: Self-organized TiO nanotube arrays: Formation, properties, applications, Reg. Cent. Adv. Technol. Mater. (2014). https://www.youtube.com/watch?v=v1mQtQtV4No (accessed May 28, 2023). [Google Scholar]
- O. Zakir, E. mountassir El Mouchtari, M. Elyaagoubi, E. mersly Lekbira, R. Idouhli, A. Aityoub, M. Eddine Khadiri, S. Rafqah, A. Abouelfida, A. Outzourhit, Anodic TiO2 nanotube: influence of annealing temperature on the photocatalytic degradation of carbamazepine, J. Aust. Ceram. Soc. 58 (2022) 1389–1397. https://doi.org/10.1007/S41779-022-00752-Z/FIGURES/6. [CrossRef] [Google Scholar]
- J.E. Yoo, K. Lee, TiO2 nanotubes fabricated by electrochemical anodization in molten o-H3PO4-based electrolyte: Properties and applications, Curr. Opin. Colloid Interface Sci. 63 (2023) 101672. https://doi.org/10.1016/J.COCIS.2022.101672. [CrossRef] [Google Scholar]
- S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, 250 μm long anodic TiO2 nanotubes with hexagonal self-ordering, Phys. Status Solidi - Rapid Res. Lett. 1 (2007). https://doi.org/10.1002/PSSR.200600069. [Google Scholar]
- P. Schmuki, Rudolf Zahradnik Lecture Series. Patrik Schmuki: Self-organized TiO nanotube arrays: Formation, properties, applications, Reg. Cent. Adv. Technol. Mater. (2014). [Google Scholar]
- O. Zakir, R. Idouhli, M. Elyaagoubi, M. Khadiri, A. Aityoub, Y. Koumya, S. Rafqah, A. Abouelfida, A. Outzourhit, Fabrication of TiO2Nanotube by Electrochemical Anodization: Toward Photocatalytic Application, J. Nanomater. 2020 (2020). https://doi.org/10.1155/2020/4745726. [Google Scholar]
- V. Sivaprakash, R. Narayanan, Synthesis of TiO2 nanotubes via electrochemical anodization with different water content, Mater. Today Proc. 37 (2021) 142–146. https://doi.org/10.1016/J.MATPR.2020.04.657. [CrossRef] [Google Scholar]
- K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Removing Structural Disorder from Oriented TiO 2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells, Nano Lett. 7 (2007) 3739–3746. https://doi.org/10.1021/nl072145a. [CrossRef] [Google Scholar]
- D. Kim, A. Ghicov, P. Schmuki, TiO2 Nanotube arrays: Elimination of disordered top layers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells, Electrochem. Commun. 10 (2008) 1835–1838. https://doi.org/10.1016/J.ELECOM.2008.09.029. [CrossRef] [Google Scholar]
- L. Yao, J. Chen, Z. Wang, T.-K. Sham, TiO 2 Nanotubes: Morphology, Size, Crystallinity, and Phase-Dependent Properties from Synchrotron-Spectroscopy Studies, J. Phys. Chem. C. 126 (2022) 3265–3275. https://doi.org/10.1021/acs.jpcc.1c10577. [CrossRef] [Google Scholar]
- T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Reports 2014 41. 4 (2014) 1–8. https://doi.org/10.1038/srep04043. [Google Scholar]
- S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, TiO2 nanotubes - Annealing effects on detailed morphology and structure, Eur. J. Inorg. Chem. 2010 (2010) 4351–4356. https://doi.org/10.1002/EJIC.201000608. [Google Scholar]
- A. Talla, N.J. Suliali, W.E. Goosen, Z.N. Urgessa, S. V. Motloung, J.R. Botha, Effect of annealing temperature and atmosphere on the structural, morphological and luminescent properties of TiO2 nanotubes, Phys. B Condens. Matter. 640 (2022). https://doi.org/10.1016/J.PHYSB.2022.414026. [Google Scholar]
- G.K. Mor, M.A. Carvalho, O.K. Varghese, M. V. Pishko, C.A. Grimes, A room temperature TiO 2 -nanotube hydrogen sensor able to self-clean photoactively from environmental contamination, J. Mater. Res. 19 (2004) 628–634. https://doi.org/10.1557/JMR.2004.19.2.628/METRICS. [CrossRef] [Google Scholar]
- Buehler, SumMet method for TITANIUM, (2022). https://www.buehler.com/sumMet.php?material=Titanium. [Google Scholar]
- U. Danookdharree, H.R. Le, C. Tredwin, The Effect of Initial Etching Sites on the Morphology of TiO 2 Nanotubes on Ti-6Al-4V Alloy, J. Electrochem. Soc. 162 (2015) E213–E222. https://doi.org/10.1149/2.0011511JES/XML. [CrossRef] [Google Scholar]
- J.D. Martín-Ramos, XPowder - XPowder Software, (n.d.). https://www.xpowder.com/ (accessed June 10, 2023). [Google Scholar]
- L. Lutterotti, Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 268 (2010) 334–340. https://doi.org/10.1016/J.NIMB.2009.09.053. [CrossRef] [Google Scholar]
- W.H. Van Zyl, Investigation into the production and application of porous titanium within the biomedical field, 2014. https://doi.org/10.1002/ente.202300052. [Google Scholar]
- B. Vrancken, Study of Residual Stresses in Selective Laser Melting, KU Leuven, 2016. [Google Scholar]
- F.E. Bedoya-Lora, I. Holmes-Gentle, A. Hankin, Electrochemical techniques for photoelectrode characterisation, Curr. Opin. Green Sustain. Chem. 29 (2021) 100463. https://doi.org/10.1016/J.COGSC.2021.100463. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.