Open Access
Issue
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
Article Number 04014
Number of page(s) 15
Section Robotics and Mechatronics
DOI https://doi.org/10.1051/matecconf/202338804014
Published online 15 December 2023
  1. Perez-Grau, F.J., Martinez-de Dios, J.R., Paneque, J.L., Acevedo, J.J., Torres-Gonzalez, A., Viguria, A., Astorga, J.R., Ollero, A. 2021. Introducing autonomous aerial robots in industrial manufacturing, Journal of Manufacturing Systems, 60, pp. 312–324. [CrossRef] [Google Scholar]
  2. Preiss, J.A., Honig, W., Sukhatme, G.S., and Ayanian, N. 2017. Crazyswarm: A large nano-quadcopter swarm. IEEE International Conference on Robotics and Automation (ICRA), Singapore, pp. 3299–3304. [CrossRef] [Google Scholar]
  3. Duisterhof, B.P., Li, S., Burgues, J., Reddi, V.J., and de Croon, G.C.H.E. 2021. Sniffy Bug: A fully autonomous swarm of gas-seeking nano quadcopters in cluttered environments. Preprint arXiv: 2107.05490v1. [Google Scholar]
  4. Mendes, K., Lemic, F., and Famaey, J. 2022. Small UAVs-supported autonomous generation of fine-grained 3D indoor radio environmental maps, IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW), Bologna, Italy, pp. 296–301. [Google Scholar]
  5. Lambert, N.O., Drew, D.S., and Yaconelli, J. 2019. Low level control of a quadrotor with deep model-based reinforcement learning, IEEE Robotics and Automation Letters, vol. 4(4), pp. 4224–4230. [CrossRef] [Google Scholar]
  6. Tayal, M., and Kolathaya, S. 2023. Control barrier functions in dynamic UAVs for kinematic obstacle avoidance: a collision cone approach. Preprint arXiv: 2303.15871v1. [Google Scholar]
  7. Bitcraze A.B. (2023) Crazyflie 2.1. Available at https://www.bitcraze.io/products/crazyflie-2-1/. Last accessed on 24 May 2023. [Google Scholar]
  8. Phang, S.K., Li, K., Chen, B.M., and Lee, T.H. 2015. Chapter 11: Systematic Design Methodology and Construction of Micro Aerial Quadrotor Vehicles, pp. 181–206. Handbook of Unmanned Vehicles. K.P. Valavanis, G.J. Vachtsevanos (eds.). [CrossRef] [Google Scholar]
  9. Cai, G., Dias, J., and Seneviratne, L. 2014. A survey of small-scale unmanned aerial vehicles: recent advances and future development trends, Unmanned Systems, vol. 2(2), pp. 1–26. [Google Scholar]
  10. Pines, D.J., and Bohorquez, F. 2006. Challenges facing future micro-air-vehicle development, Journal of Aircraft, vol. 43(2), pp. 290–305. [CrossRef] [Google Scholar]
  11. Muruga Lal Jeyan, J.V., and Sreekumar, A. 2020. Methodical study of micro air vehicle/UAV device and its mechanism, AIP Conference Proceedings, vol. 2311, pp. 040017(1–11). [Google Scholar]
  12. T-motor. (2023) F1303. Available on: https://store.tmotor.com/goods-1074-F1303.html. Last Accessed: 23 June 2023. [Google Scholar]
  13. Saheb, S.H., and Babu, G.S. 2017. Design and analysis of light weight agriculture robot, Global Journal of Researchers in Engineering: A Mechanical and Mechanics Engineering, vol. 17(6), pp. 23–40. [Google Scholar]
  14. Marode, S.T., Kale, P.C., and Lakal, N.V. 2014. Design, fabrication and testing of quadrotor prototype, International Journal of Engineering and Technical Research, vol. 2(5), pp. 97–103. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.