Open Access
Issue |
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
|
|
---|---|---|
Article Number | 04012 | |
Number of page(s) | 17 | |
Section | Robotics and Mechatronics | |
DOI | https://doi.org/10.1051/matecconf/202338804012 | |
Published online | 15 December 2023 |
- Sileo, M., Nigro, M., Bloisi, D.D., Pierri, F. 2021. Vision based robot-to-robot object handover, 20th International Conference on Advanced Robotics (ICAR), 6-10 December, Ljubljana, Slovenia, pp. 664-669. [Google Scholar]
- Li, C., Zheng, P., Yin, Y., Wang, B., Wang, L. 2023. Deep reinforcement learning in smart manufacturing: A review and prospects, CIRP Journal of Manufacturing Science and Technology, 40, pp. 75-101. [CrossRef] [Google Scholar]
- El Zaatari, S., Marei, M., Li, W., Usman, Z. 2019. Cobot Programming for Collaborative Industrial Tasks: An Overview, Robotics and Autonomous Systems, 116, pp. 162-180. [CrossRef] [Google Scholar]
- Ortenzi, V., Cosgun, A., Pardi, T., Chan, W.P., Croft, E., Kulic, D. 2021. Object Handovers: A review for robotics, IEEE Transactions on Robotics, 37(6), pp. 18551873. [CrossRef] [Google Scholar]
- Gomes, N.M., Martins, F.N., Lima, J., Wörtche, H. 2022. Reinforcement Learning for Collaborative Robots Pick-and-Place Applications: A Case Study, Automation, 3, pp. 223-241. [CrossRef] [Google Scholar]
- Semeraro, F., Griffiths, A., Cangelosi, A. 2023. Human-robot collaboration and machine learning: A systematic review of recent research, Robotics and Computer- Integrated Manufacturing, 79, pp. 102432(1-16) [CrossRef] [Google Scholar]
- Costanzo, M., De Maria, G., Natale, C. 2021. Handover control for human-robot and robot-robot collaboration, Frontiers in Robotics and AI, 8, pp. 672995 (1-17). [CrossRef] [Google Scholar]
- Yang, X., Ji, Z., Wu, J., Lai, Y.-K. 2021. An open-source multi-goal reinforcement learning environment for robotic manipulation with Pybullet, Preprint arXiv:2105.05985v1. Code available on: https://github.com/IanYangChina/pybullet_multigoal_gym [Google Scholar]
- Gallouédec, Q., Cazin, N., Dellandrea, E., and Chen, L. 2021. Panda-gym: Opensource goal-conditioned environments for robotic learning, 4th Robot Learning Workshop: Self-Supervised and Lifelong Learning at NeurIPS. Code available at https://github.com/qgallouedec/panda-gym. [Google Scholar]
- Franka Emika. 2023. The new FRANKA RESEARCH 3: The platform of choice for cutting edge AI & Robotics research. Available on: https://www.franka.de/research. Last accessed: 27 June 2023. [Google Scholar]
- Stable Baselines3. 2022. Stable-Baselines3 Docs - Reliable Reinforcement Learning Implementations. Available on: https://stable-baselines3.readthedocs.io/en/master/index.html. Last accessed on 27 June 2023. [Google Scholar]
- Mnih, V., Badia, A.P., Mirza, M., Graves, A., Harley, T., Lillicrap, T.P., Silver, D., Kavukcuoglu, K. 2016. Asynchronous Methods for Deep Reinforcement Learning, Preprint arXiv:1602.01783v2. [Google Scholar]
- Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D. 2019. Continuous control with deep reinforcement learning, Preprint arXiv: 1509.02971v6. [Google Scholar]
- Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., Zaremba, W. 2018. Hindsign Experience Replay, Preprint arXiv: 1707.01495v3. [Google Scholar]
- Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M. 2013. Playing Atari with Deep Reinforcement Learning, Preprint arXiv: 1312.5602v1. [Google Scholar]
- Schulman, J., Wolsi, F., Dhariwal, P., Radford, A., Klimov, O. 2017. Proximal Policy Optimization Algorithms, Preprint arXiv: 1707.06347v2. [Google Scholar]
- Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. 2018. Soft Actor-Critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor, Preprint arXiv: 1801.01290v2. [Google Scholar]
- Fujimoto, S., van Hoof, H., Meger, D. 2018. Addressing function approximation error in actor-critic methods, Preprint arXiv: 1802.09477v3. [Google Scholar]
- Zhu, Y., Wong, J., Madlekar, A., Martín-Martín, R., Joshi, A., Nasiriany, S., Zhu, Y. 2009. robosuite: A modular simulation framework for robot learning, Preprint arXiv:2009.12293. Code available on: https://github.com/ARISE-Initiative/robosuite [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.