Open Access
Issue |
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 18 | |
Section | Robotics and Mechatronics | |
DOI | https://doi.org/10.1051/matecconf/202338804009 | |
Published online | 15 December 2023 |
- Afif, M., Ayachi, R., Said, Y. and Atri, M., 2020. Deep learning based application for indoor scene recognition. Neural Processing Letters, 51, pp. 2827-2837. [CrossRef] [Google Scholar]
- Kim, J. and Jun, H., 2008. Vision-based location positioning using augmented reality for indoor navigation. IEEE Transactions on Consumer Electronics, 54(3), pp. 954-962. [CrossRef] [Google Scholar]
- Zhang, X., Wang, L. and Su, Y., 2021. Visual place recognition: A survey from deep learning perspective. Pattern Recognition, 113, p.107760. [CrossRef] [Google Scholar]
- Schubert, S., Neubert, P., Garg, S., Milford, M. and Fischer, T., 2023. Visual Place Recognition: A Tutorial. arXiv preprint:arXiv:2303.03281. [Google Scholar]
- Chen, Z., Maffra, F., Sa, I. and Chli, M., 2017, September. Only look once, mining distinctive landmarks from convnet for visual place recognition. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 9-16). IEEE. [Google Scholar]
- Masone, C. and Caputo, B., 2021. A survey on deep visual place recognition. IEEE Access, 9, pp. 19516-19547. [CrossRef] [Google Scholar]
- Zhou, B., Lapedriza, A., Khosla, A., Oliva, A. and Torralba, A., 2017. Places: A 10 million image database for scene recognition. IEEE transactions on pattern analysis and machine intelligence, 40(6), pp. 1452-1464. [Google Scholar]
- IEEE. Quattoni, A. and Torralba, A., 2009, June. Recognizing indoor scenes. In 2009 IEEE conference on computer vision and pattern recognition (pp. 413-420). IEEE. [CrossRef] [Google Scholar]
- Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He, Q., 2020. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), pp. 43-76. [Google Scholar]
- Tammina, S., 2019. Transfer learning using vgg-16 with deep convolutional neural network for classifying images. International Journal of Scientific and Research Publications (IJSRP), 9(10), pp. 143-150. [Google Scholar]
- Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., 2009, June. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee. [CrossRef] [Google Scholar]
- Jiang, Z.P., Liu, Y.Y., Shao, Z.E. and Huang, K.W., 2021. An improved VGG16 model for pneumonia image classification. Applied Sciences, 11(23), p.11185. [CrossRef] [Google Scholar]
- Joshi, K., Tripathi, V., Bose, C. and Bhardwaj, C., 2020. Robust sports image classification using InceptionV3 and neural networks. Procedia Computer Science, 167, pp. 2374-2381. [CrossRef] [Google Scholar]
- Shabbir, A., Ali, N., Ahmed, J., Zafar, B., Rasheed, A., Sajid, M., Ahmed, A. and Dar, S.H., 2021. Satellite and scene image classification based on transfer learning and fine tuning of ResNet50. Mathematical Problems in Engineering, 2021, pp. 118. [Google Scholar]
- Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W. and Serhani, M.A., 2021. Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures. Sensors, 21(5), p.1688. [CrossRef] [Google Scholar]
- Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large- scale image recognition. arXiv preprint arXiv:1409.1556. [Google Scholar]
- Pardede, J., Sitohang, B., Akbar, S. and Khodra, M.L., 2021. Implementation of transfer learning using VGG16 on fruit ripeness detection. Int. J. Intell. Syst. Appl, 13(2), pp. 52-61. [Google Scholar]
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826). [Google Scholar]
- Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W. and Serhani, M.A., 2021. Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures. Sensors, 21(5), p.1688. [CrossRef] [Google Scholar]
- He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [Google Scholar]
- Shyamalee, T. and Meedeniya, D., 2022. Glaucoma detection with retinal fundus images using segmentation and classification. Machine Intelligence Research, 19(6), pp. 563-580. [CrossRef] [Google Scholar]
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. and Berg, A.C., 2015. Imagenet large scale visual recognition challenge. International journal of computer vision, 115, pp. 211-252. [CrossRef] [MathSciNet] [Google Scholar]
- Macenski, S., Martín, F., White, R. and Clavero, J.G., 2020, October. The marathon 2: A navigation system. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2718-2725). IEEE. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.