Open Access
Issue
MATEC Web Conf.
Volume 388, 2023
2023 RAPDASA-RobMech-PRASA-AMI Conference Advanced Manufacturing Beyond Borders - The 24th Annual International RAPDASA Conference joined by RobMech, PRASA and AMI, hosted by CSIR and CUT
Article Number 01001
Number of page(s) 11
Section Design and Additive Manufacturing of Titanium and Platinum Group Metal Parts seminar
DOI https://doi.org/10.1051/matecconf/202338801001
Published online 15 December 2023
  1. M. Tilton, G. S. Lewis, and G. P. Manogharan, "Additive manufacturing of orthopedic implants," in Orthopedic Biomaterials: Progress in Biology, Manufacturing, and Industry Perspectives, Springer International Publishing, (2018), pp. 21–55. DOI: 10.1007/978-3-319-89542-0_2. [CrossRef] [Google Scholar]
  2. J. M. Chacón, P. J. Núñez, M. A. Caminero, E. García-Plaza, J. Vallejo, and M. Blanco, "3D printing of patient-specific 316L–stainless–steel medical implants using fused filament fabrication technology: two veterinary case studies," Biodes Manuf, vol. 5, no. 4, pp. 808–815, Oct. (2022), DOI: 10.1007/s42242-022-00200-8. [CrossRef] [Google Scholar]
  3. J. Strauss, M. Salojee, A. Du Plessis, I. Zhirnov, P. Krakmale, and M. Khodja, "An investigation into the properties of 3D printed Ti6Al4V FCC lattice structures with different strut thicknesses," MATEC Web of Conferences, vol. 370, p. 08002, (2022), DOI: 10.1051/matecconf/202237008002. [Google Scholar]
  4. R. J. R. Fernandes et al., "Biomechanical Comparison of Subsidence Between Patient-Specific and Non-Patient-Specific Lumbar Interbody Fusion Cages," Global Spine J, (2022), DOI: 10.1177/21925682221134913. [Google Scholar]
  5. Z. Zhang, H. Li, G. R. Fogel, Z. Liao, Y. Li, and W. Liu, "Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis," World Neurosurg, vol. 111, pp. e581–e591, Mar. (2018), DOI: 10.1016/J.WNEU.2017.12.127. [CrossRef] [Google Scholar]
  6. L. Yuan, S. Ding, and C. Wen, "Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review," Bioact Mater, vol. 4, no. 1, pp. 56–70, Dec. (2019), DOI: 10.1016/J.BIOACTMAT.2018.12.003. [Google Scholar]
  7. Strauss, J., "Effect of strut thickness on properties of 3D printed Ti6Al4V lattice structure designs.," (2022). [Google Scholar]
  8. Z. Yu, P. Thakolkaran, K. Shea, and T. Stanković, "Artificial neural network supported design of a lattice-based artificial spinal disc for restoring patient-specific anisotropic behaviors," Comput Biol Med, vol. 152, Jan. (2023), DOI: 10.1016/J.COMPBIOMED.2022.106475. [Google Scholar]
  9. A. Benady, S. J. Meyer, E. Golden, S. Dadia, and G. Katarivas Levy, "Patient specific Ti-6Al-4V lattice implants for critical-sized load-bearing bone defects reconstruction," Mater Des, vol. 226, Feb. (2023), DOI: 10.1016/J.MATDES.2023.111605. [CrossRef] [Google Scholar]
  10. R. Alkentar, N. Kladovasilakis, D. Tzetzis, and T. Mankovits, "Effects of Pore Size Parameters of Titanium Additively Manufactured Lattice Structures on the Osseointegration Process in Orthopedic Applications: A Comprehensive Review," Crystals, vol. 13, no. 1. MDPI, Jan. 01, (2023). DOI: 10.3390/cryst13010113. [Google Scholar]
  11. C. Yee-Yanagishita et al., "Biomechanical comparison of subsidence performance among three modern porous lateral cage designs," Clinical Biomechanics, vol. 99, Oct. (2022), DOI: 10.1016/j.clinbiomech.2022.105764. [CrossRef] [Google Scholar]
  12. C. Q. Jia et al., "A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion," Bioact Mater, vol. 23, pp. 234–246, May (2023), DOI: 10.1016/J.BIOACTMAT.2022.11.003. [Google Scholar]
  13. K. C. McGilvray et al., "Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model," Spine Journal, vol. 18, no. 7, pp. 1250–1260, Jul. (2018), DOI: 10.1016/j.spinee.2018.02.018. [CrossRef] [Google Scholar]
  14. A. H. Schoen, "Reflections concerning triply-periodic minimal surfaces," Interface Focus, vol. 2, no. 5, pp. 658–668, Oct. (2012), DOI: 10.1098/rsfs.2012.0023. [CrossRef] [Google Scholar]
  15. D. W. Abueidda, M. Elhebeary, C.S. Shiang, S. Pang, R.K. Abu Al-Rub, and I.M. Jasiuk, "Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study," Mater Des, vol. 165, Mar. (2019), DOI: 10.1016/j.matdes.2019.107597. [CrossRef] [Google Scholar]
  16. P. B. Suh, C. Puttlitz, C. Lewis, B. S. Bal, and K. McGilvray, "The effect of cervical interbody cage morphology, material composition, and substrate density on cage subsidence," Journal of the American Academy of Orthopaedic Surgeons, vol. 25, no. 2, pp. 160–168, (2017), DOI: 10.5435/JAAOS-D-16-00390. [CrossRef] [Google Scholar]
  17. A. G. Au, V. James Raso, A. B. Liggins, and A. Amirfazli, "Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements," J Biomech, vol. 40, no. 6, pp. 1410–1416, (2007), DOI: 10.1016/j.jbiomech.2006.05.020. [CrossRef] [Google Scholar]
  18. A. Parisien, E. K. Wai, S. A. Elsayed, H. Frei, ; Mostafa, and ; And, "Subsidence of Spinal Fusion Cages: A Systematic Review," Downloaded from International Journal of Spine Surgery, vol. 16, no. 6, pp. 1103–1118, (2023), DOI: 10.14444/8363. [Google Scholar]
  19. M. L. Raffa, V. Nguyen, P. Hernigou, C. Flouzat‐Lachaniette, and G. Haiat, "Stress shielding at the bone‐implant interface: Influence of surface roughness and of the bone‐implant contact ratio," Journal of Orthopaedic Research, vol. 39, no. 6, pp. 1174–1183, Jun. (2021), DOI: 10.1002/jor.24840. [CrossRef] [Google Scholar]
  20. ASTM Standard F2267, "Standard test method for measuring load-induced subsidence of invertebral body fusion device under static axial compression," (2022). [Google Scholar]
  21. ASTM F2077, "ASTM F2077-22 Standard test methods for intervertebral body fusion devices". [Google Scholar]
  22. ASTM F1839, "Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments 1," (2016), DOI: 10.1520/F1839-08R16. [Google Scholar]
  23. ASTM Standard F1839, "Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments," (2016), DOI: 10.1520/F1839-08R16. [Google Scholar]
  24. J. H. Peck, K. D. Kavlock, B. L. Showalter, B. M. Ferrell, D. G. Peck, and A. E. Dmitriev, "Mechanical performance of lumbar intervertebral body fusion devices: An analysis of data submitted to the Food and Drug Administration," J Biomech, vol. 78, pp. 87–93, Sep. (2018), DOI: 10.1016/j.jbiomech.2018.07.022. [CrossRef] [Google Scholar]
  25. G. Fogel et al., "Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates - a comprehensive mechanical and biological analysis," Spine Journal, vol. 22, no. 6, pp. 1028–1037, Jun. (2022), DOI: 10.1016/j.spinee.2022.01.003. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.