Open Access
Issue |
MATEC Web Conf.
Volume 385, 2023
The 15th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2023 (YS23)
|
|
---|---|---|
Article Number | 01032 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/202338501032 | |
Published online | 30 October 2023 |
- A.A. Khairadeen, O.J. Lee, D. Lee, C. Park, Remote Indoor Construction Progress Monitoring Using Extended Reality, Sustain. 13, 2290 (2021). [CrossRef] [Google Scholar]
- C. Kroppa, C. Koch, M. König, Interior construction state recognition with 4D BIM registered image sequences, Autom. in Constr. 86, 11–32 (2018). [CrossRef] [Google Scholar]
- M. R. Khandakar, J. Louis, Activity identification in modular construction using audio signals and machine learning, Autom. in Constr. 119, 103361 (2020). [CrossRef] [Google Scholar]
- D. Calvetti, P. Mêda, M.C. Gonçalves, H. Sousa, Worker 4.0: The Future of Sensored Construction Sites, Buildings, 10, 169 (2020). [CrossRef] [Google Scholar]
- A.S. Rao, M. Radanovic, Y. Liu, S. Hu, Y. Fang, K. Khoshelham, M. Palaniswami, T. Ngo, Realtime monitoring of construction sites: Sensors, methods, and applications, Autom. in Constr. 136, 104099 (2022). [CrossRef] [Google Scholar]
- U.C. Gatti, S. Schneider, G.C. Migliaccio, Physiological Condition Monitoring of Construction Workers. Autom. Constr. 44, 227–233 (2014). [CrossRef] [Google Scholar]
- A. Aryal, A. Ghahramani, B. Becerik-Gerber, Monitoring Fatigue in Construction Workers Using Physiological Measurements. Autom. Constr. 82, 154–165 (2017). [CrossRef] [Google Scholar]
- D. Calvetti, P.N.M. Magalhaes, S.F. Sujan, M.C. Gonçalves, H.J. Campos de Sousa, Challenges of Upgrading Craft Workforce into Construction 4.0—Framework and Agreements, Proc. Inst. Civ. Eng. Manag. Procure. Law, 1–7 (2020). [Google Scholar]
- T. Cheng, U. Mantripragada, J. Teizer, P.A. Vela, Automated Trajectory and Path Planning Analysis Based on Ultra Wideband Data, J. Comput. Civ. Eng. 26, 151–160 (2012). [CrossRef] [Google Scholar]
- L. Joshua, K. Varghese, Accelerometer-based activity recognition in construction. J. Comput. Civil. Eng. 25(5), 370–379 (2011). [CrossRef] [Google Scholar]
- G. S. Maruthi, V. Hegde, Application of MEMS accelerometer for detection and diagnosis of multiple faults in the roller element bearings of three phase induction motor, IEEE Sensors J. 16(1), 145–152 (2016). [CrossRef] [Google Scholar]
- M. Giordano, N. Baumann, M. Crabolu, R. Fischer, G. Bellusci, M. Magno, Design and Performance Evaluation of an Ultralow-Power Smart IoT Device With Embedded TinyML for Asset Activity Monitoring, IEEE Trans. Instrum. Meas. 71, 2510711 (2022). [CrossRef] [Google Scholar]
- F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, F. Zhao, A reliable and accurate indoor localization method using phone inertial sensors, in Proc. ACM Conf. Ubiquitous Comput. - (UbiComp ’12), 421. (2012). [CrossRef] [Google Scholar]
- J. Park, J. Chen, Y. K. Cho, Self-corrective knowledge-based hybrid tracking system using BIM and multimodal sensors, Adv. Eng. Inf. 32, 126–138 (2017). [CrossRef] [Google Scholar]
- J. Zhao, O. Seppanen. A. Peltokorpi, B. Badihi, H. Olivieri, Real-time resource tracking for analyzing value-adding time in construction, Auto. Construct, 104 52–65 (2019). [CrossRef] [Google Scholar]
- L. Mohanty, S. Chae, Y. Yang, Identifying productive working patterns at construction sites using BLE sensor networks, Dev. in the Built Env. 4, 100025 (2020). [Google Scholar]
- R. Faragher, R. Harle, An analysis of the accuracy of bluetooth low energy for indoor positioning applications, in: Proc. 27th Int. Tech. Meet. Satell. Div. Inst. Navig. (ION GNSS+ 2014), 201–210 (2014). [Google Scholar]
- S. El-Omari, O. Moselhi, Integrating automated data acquisition technologies for progress reporting of construction projects, Auto. Construct. 20 (6), 699–705 (2011). [CrossRef] [Google Scholar]
- S. Dixit, Impact of management practices on construction productivity in Indian building construction projects: an empirical study, Org., Tech. and Manag. in Constr. 13, 2383–2390 (2021). [Google Scholar]
- Ch. Kropp, Ch. Koch, Markus König, Interior construction state recognition with 4D BIM registered image sequences, Autom. in Const. 86, 11–32 (2018). [CrossRef] [Google Scholar]
- Ch. Zhang, D. Arditi, Automated progress control using laser scanning technology, Autom. n Constr. 36, 108–116 (2013). [CrossRef] [Google Scholar]
- T. Omar, M.L. Nehdi, Data acquisition technologies for construction progress tracking, Autom. Constr. 70, 143–155 (2016). [CrossRef] [Google Scholar]
- Z. Pučko, N. Šuman, D. Rebol, Automated continuous construction progress monitoring using multiple workplace real time 3D scans, Adv. Eng. Inf. 38, 27–40 (2018). [CrossRef] [Google Scholar]
- P.M. Goodrum, M.A. McLaren, A. Durfee, The application of active radio frequency identification technology for tool tracking on construction job sites, Autom. Constr. 15, 292–302 (2006). [CrossRef] [Google Scholar]
- E. Ergen, B. Akinci, R. Sacks, Tracking and locating components in a precast storage yard utilizing radio frequency identification technology and GPS, Autom. Constr. 16, 354–367 (2007). [CrossRef] [Google Scholar]
- Q. Wang, M.-K. Kim, Applications of 3d point cloud data in the construction industry: a fifteen-year review from 2004 to 2018, Adv. Eng. Info. 39, 306–319 (2019). [CrossRef] [Google Scholar]
- J.S. Alvares, D.B. Costa, R.R.S. de Melo, Exploratory study of using unmanned aerial system imagery for construction site 3d mapping, Construct. Innov. 18 (3), 301–320 (2018). [CrossRef] [Google Scholar]
- P. Lin, Q. Li, Q. Fan, X. Gao, Real-time monitoring system for workers’ behaviour analysis on a large-dam construction site, Int. J. Dist. Sensor Net. 9 (10), 509423 (2013). [CrossRef] [Google Scholar]
- Lei Hu, Design of Remote Monitoring Iot System Based on 5G and New Optical Fiber Intelligent Structure, Adv in Mat. Sc. and Eng. 12 (2022). [Google Scholar]
- R. Faragher, R. Harle, An analysis of the accuracy of bluetooth low energy for indoor positioning applications, in Proc. 27th Int. Tech. Meet. Satell. Div. Inst. Navig. (ION GNSS+ 2014), 201–210 (2014). [Google Scholar]
- E. Ergen, B. Akinci, B. East, J. Kirby, Tracking components and maintenance history within a facility utilizing radio frequency identification technology, J. Comput. Civ.Eng. 21 (1), 11–20 (2007). [CrossRef] [Google Scholar]
- F. Vahdatikhaki, A. Hammad, Framework for near real-time simulation of earthmoving projects using location tracking technologies, Autom. Constr. 42, 50–67 (2016). [Google Scholar]
- R. Bao, M.A. Sadeghi, M. Golparvar-Fard, Characterizing construction equipment activities in long video sequences of earthmoving operations via kinematic features, Constr. Res. Congr, 849–858, (2016). [Google Scholar]
- N.D. Nath, T. Chaspari, A.H. Behzadan, Automated ergonomic risk monitoring using body-mounted sensors and machine learning, Adv. Eng. Inf. 514–526 (2018). [CrossRef] [Google Scholar]
- R. Akhavian, L. Brito, A. Behzadan, Integrated mobile sensor-based activity recognition of construction equipment and human crews, Conf. on Aut. and Robotic Constr. of Inf., 1–20 (2015). [Google Scholar]
- W.-F. Cheung, T.-H. Lin and Yu-Ch. Lin, A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies, Sensors 18, 436 (2018). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.