Open Access
Issue
MATEC Web Conf.
Volume 385, 2023
The 15th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2023 (YS23)
Article Number 01014
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202338501014
Published online 30 October 2023
  1. B. Metz, Controlling Climate change, Cambridge University Press, 376, (2010), ISBN 978-0521-76403-2 [Google Scholar]
  2. C. Baglivo, Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate, Sustainability, 13 (11), (2021) [Google Scholar]
  3. O. Zhukova, N. Nehoda, Forecast of changes in climate factors of the city of Kyiv and their impact on the life cycle of buildings, Ecological safety, and envir. protection, 3 (43), (2022) [Google Scholar]
  4. R. Králiková, Thermal Comfort and Working Environment, in Proceedings of the 17th International Conference, Bratislava, March 14-15, ESE-33 (2017) [Google Scholar]
  5. E. A. Mathez, J. E. Smerdon, Climate change 2, New York, Columbia University Press, 2018, 520, ISBN 9780231172837 [Google Scholar]
  6. A. Sdei, M. Mcevoy, The effects of insulation and air-tightness in reducing the overheating risk of retrofitted social housing, in Proceedings of the PLEA2016 Los Angeles - 32nd International Conference on Passive and Low Energy Architecture, 11-13 July, (2016) [Google Scholar]
  7. A. Laouadi, M. Bartko, M. A. Lacasse, A new methodology of evaluation of overheating in buildings, Energy and Buildings, 226, (2020) [Google Scholar]
  8. I. Chmúrny, Thermal protection of buildings, Bratislava: JAGA Group, 230, (2003), ISBN 8088905-27-3 [Google Scholar]
  9. M. Němeček, M. Kalousek, The effect of internal heat accumulation of passive house structures on their summer thermal stability, Doctoral thesis - Brno University of Technology, (2018) [Google Scholar]
  10. M. Košir, T. Gostiša, Ž. Kristl, Influence of architectural building envelope characteristics on energy performance in Central European climatic conditions, Journal of Building Engineering, 15, 278-288 (2018) [CrossRef] [Google Scholar]
  11. Y. Lavafpour, S. Sharples, B. Gething, The impact of building form on overheating control: a case study of Larch House, Architectural Science Review, 63, 467-480, (2020) [CrossRef] [Google Scholar]
  12. F. Kulhanek, Construction physics II. Building thermal technology , ČVUT, 144, (2006), ISBN 80-01-03408-9 [Google Scholar]
  13. J. Hirs, J. Mohelníková, R. Yao, Winter and summer thermal stability and room daylighting, in Proceedings of the 7th International Conference in Building and Environment SuDBE (2015) [Google Scholar]
  14. M. Bielek, Building and energy, VIDAS, Banská Bystrica, 214, (1995), ISBN 80-85306-07-7 [Google Scholar]
  15. D. Katunský, Construction physics, TUKE, (2013), ISBN 978-80-553-0972-9 [Google Scholar]
  16. I. Augusta, Building thermal technology for everyone, Institute of Building Information, Praha, 63, (1991), ISBN 80-85380-01-3 [Google Scholar]
  17. P. Usta, B. Zengin, An evaluation of the glazing type impact on building energy performance through a building simulation, Journal of Energy Systems, 6(1), 1-17, (2022) [CrossRef] [Google Scholar]
  18. dennisrhollowayarchitect.com [online] „Socrates Sun-Tempered House”, available: http://www.dennisrhollowayarchitect.com/SocratesHouse.html, last accessed 2022/5/27 [Google Scholar]
  19. coltinfo.sk [online] „Colt- shading and facade systems”, available: https://www.coltinfo.sk/na-stiahnutie.html, last accessed 2023/2/24 [Google Scholar]
  20. M. A. Memari, Curtain Wall System, American Society of Civil Engineers, 217, (2013), ISBN 978-0-7844-7768-7 [Google Scholar]
  21. A. Puškár et al., Windows, glazed walls, doors, gates, Jaga group, s.r.o., 266, (2008), ISBN 97880-8076-062-5 [Google Scholar]
  22. D. Katunský et al., Acoustics and daylighting, TUKE, Košice, 105, (2015), ITMS 26110230093 [Google Scholar]
  23. J. Hraška, Shading technique of buildings, Spektrum STU, 102, (2020), ISBN 978802750066 [Google Scholar]
  24. M. Kraus, I. J. Senitková, L. Kučerová, The impact of solar shading elements on thermal comfort, in AIP Conference Proceedings, 2488, (2022) [Google Scholar]
  25. W. Hwang, P. E. Wiseman, V. Thomas, Simulation of Shade Tree Effects on Residential Energy Consumption in Four U.S. Cities, CATE, 9, (2016) [Google Scholar]
  26. M. Chagolla et al., Effect of Tree Shading on the Thermal Load of a House in a Warm Climate Zone in Mexico, Proceedings of the ASME IMECE 2012 November 9-15, Texas, USA (2012) [Google Scholar]
  27. M. Masaryk, Adaptive Shading System as a Building Heat Load Reduction, in Proceedings of the MATEC Web of Conferences 369, (2022) [Google Scholar]
  28. C. Buratti et al., Analysis of Nano Silica Aerogel Based Glazing Effect on the Solar Heat Gain and Cooling Load in a School under Different Climatic Conditions, Environ. Sci. Proc. (2021) [Google Scholar]
  29. Y. Zhou, Artificial neural network-based smart aerogel glazing in low-energy buildings: A state- of-the-art review, iScience, 24, (2021) [Google Scholar]
  30. K. Stejskalová, N. Vavřínová, Assessment of the Summer Thermal Stability of the Attic Room Using Two Different Software, Civil and Environmental Engineering, 16, 360-369, (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.