Open Access
Issue
MATEC Web Conf.
Volume 385, 2023
The 15th International Scientific Conference of Civil and Environmental Engineering for the PhD. Students and Young Scientists – Young Scientist 2023 (YS23)
Article Number 01010
Number of page(s) 8
DOI https://doi.org/10.1051/matecconf/202338501010
Published online 30 October 2023
  1. Gas pipeline incidents, 11th Report of the European Gas Pipeline Incident Data Group (period 1970 - 2019) (egig.eu/report) [Google Scholar]
  2. P.V. Varde, M.G. Pecht, Life Prediction. In: Risk-Based Eng. An Integr. Approach to Complex Syst. Ref. to Nucl. Plants. Singapore: Springer Singapore, 115-39 (2011) [Google Scholar]
  3. P.L. Andresen, F.P. Ford, Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems. Mater Sci Eng A 103, 167-84 (1988) [CrossRef] [Google Scholar]
  4. A. Carpinteri, Handbook of fatigue crack propagation in metallic structures, Amsterdam: Elsevier (1994) [Google Scholar]
  5. P. Forrest, Fatigue of metals, 9781483160733, (1962) [Google Scholar]
  6. R.B. Heywood, Designing Against Fatigue, 0412068206, (1961) [Google Scholar]
  7. W.G. Papadimitriou, Autonomous Remaining Useful Life Estimation, 20080004839, (2008) [Google Scholar]
  8. Nishiguchi, F. Inada, M. Takahashi, B. Ogawa, T. Inagaki, T. Ohira, et al. A review: Japanese pipe wall thinning management based on JSME rules and recent R&D studies performed to enhance the rules, E-J Adv Maint 2, 14-24 (2010) [Google Scholar]
  9. P. Vaidya, M. Rausand, Remaining useful life, technical health, and life extension, Proc Inst Mech Eng Part O J Risk Reliab 225, 219-31 (2011) [Google Scholar]
  10. J.Z. Sikorska, M. Hodkiewicz, L. Ma, Prognostic modelling options for remaining useful life estimation by industry, Mech Syst Signal Process 25, 1803-36 (2011) [CrossRef] [Google Scholar]
  11. Y. Li, K. Hasegawa, P. Hoang, B. Bezensek, Prediction Method for Plastic Collapse of Pipes Subjected to Combined Bending and Torsion Moments. J Press Vessel Technol 134 (2010) [Google Scholar]
  12. X.-S. Si, W. Wang, C.-H. Hu, D.-H. Zhou, Remaining useful life estimation - A review on the statistical data driven approaches, Eur J Oper Res 213, 1-14 (2011) [CrossRef] [Google Scholar]
  13. A. Coppe, M.J. Pais, R.T. Haftka, N.H. Kim, Using a Simple Crack Growth Model in Predicting Remaining Useful Life, J Aircr 2012 49, 1965-73 (2012) [Google Scholar]
  14. National standard of Ukraine. Evaluation and prediction reserve resource (service term) technical systems. DSTU. UkrNDNC, Kyiv (2015). [Google Scholar]
  15. H. Rezaei, B. Ryan, I. Stoianov, Pipe Failure Analysis and Impact ofDynamic Hydraulic Conditions in Water Supply Networks, Procedia Eng 2015 119, 253-62 (2015) [Google Scholar]
  16. M.S. El-Abbasy, A. Senouci, T. Zayed, F. Mirahadi, L. Parvizsedghy, Artificial neural network models for predicting condition of offshore oil and gas pipelines, Autom Constr 45, 50-65 (2014) [CrossRef] [Google Scholar]
  17. M. Mahmoodian, V. Aryai, Structural failure assessment of buried steel water pipes subject to corrosive environment, Urban Water J 14, 1023-30 (2017) [CrossRef] [Google Scholar]
  18. R. Farmani, K. Kakoudakis, K. Behzadian, D. Butler, Pipe Failure Prediction in Water Distribution Systems Considering Static and Dynamic Factors. Procedia Eng 2017 186, 117-26 (2017) [Google Scholar]
  19. L.S. Lahmadi, N. Terrissa, A. Zerhouni, Data-driven method for estimating the remaining useful life of a Composite Drill Pipe, IEEE, (2018) [Google Scholar]
  20. R. Tavakoli et al. Remaining useful life prediction of water pipes using artificial neural network and adaptive neuro fuzzy inference system models. Texas: UTA Libraries, (2018) [Google Scholar]
  21. B. Cai, B. X. Shao, Y. Liu, X. Kong, H. Wang, H. Xu et al. Remaining useful life estimation of structure systems under the influence of multiple causes: Subsea pipelines as a case study. IEEE Trans Ind Electron 67, 5737-47 (2020) [CrossRef] [Google Scholar]
  22. M.D. Serediuk, Study of the peculiarities of the hydraulic characteristics of a nonisothermal oil pipeline, Exploration and development of oil and gas deposits 1, 6, 96-100 (2003) [Google Scholar]
  23. O.M. Mandryk, Analysis of the causes of emergencies and destruction of maingas pipelines, Scientific Bulletin of NLTU of Ukraine 25.1, 155-162 (2015) [Google Scholar]
  24. V. Grudz, Typical calculations of reliability indicators of gas and oil supply systems. Complex industry methodology, Ivano-Frankivsk, Fakel, 76 p., (2009) [Google Scholar]
  25. O. Stepova, I. Rassoha, L. Blazhko, O. Hanoshenko, Calculation of Lifetime of Steel Oil Pipelines with the Account of Corrosive Environment Affect. Proceedings of the 2nd International Conference on Building Innovations. ICBI 2019. Lecture Notes in Civil Engineering, Springer 73 (2020) [Google Scholar]
  26. M.D. Serediuk, J.V. Yakymiv, V.P. Lisafin, Pipeline transport of oil and oil products, Ivano-Frankivsk, IFNTUOG, 517 p. (2002) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.