Open Access
Issue |
MATEC Web Conf.
Volume 384, 2023
4th International Conference on Sustainable Practices and Innovations in Civil Engineering (SPICE 2023)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 11 | |
Section | Materials & Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/202338402001 | |
Published online | 27 October 2023 |
- K.V. Tittelboom, N. D. Belie, W. D. Muyncka, W. Verstraete, Use of bacteria to repair cracks in concrete, Cement and Concrete Research, 40 (1), 157-166 (2008). https://doi.org/10.1016/j.cemconres.2009.08.025. [Google Scholar]
- L. Tan, B. Reeksting, V. Ferrandiz-Mas, A. Heath, S. Gebhard, K. Paine. Effect of carbonation on bacteria-based self-healing of cementitious composites. Construction and building materials, 257, 119501 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119501. [CrossRef] [Google Scholar]
- R. Siddique, N. K. Chahal, Effect of ureolytic bacteria on concrete properties, Construction and Building Materials, 25, 3791–3801 (2011) https://doi.org/10.1016/j.conbuildmat.2011.04.010. [CrossRef] [Google Scholar]
- A. E. Enein Ali, F. Talkhan, A. Gawwad, Application of microbial cementation to improve the physical-mechanical properties of cement mortar, Housing and Building National Research Center, (2013). [Google Scholar]
- H.M. Jonkers, A. Thijssen, O. Copuroglu, E. Schlangen, Application of bacteria as self-healing agent for the development of sustainable concrete, Proceedings of the 1st International Conference on BioGeoCivil Engineering, (23–25 June 2008), Delft, The Netherlands. [Google Scholar]
- K. Santhosh, S.K. Ramachandran, V. Ramakrishnan, S.S. Bang, Remediation of concrete using microorganisms, American Concrete Institute Materials Journal, 98 (2001) 3–9. DOI: 10.14359/10154. [Google Scholar]
- J.L. Day, V. Ramakrishnan, S.S. Bang, Microbiologically induced sealant for concrete crack remediation, 16th Engineering Mechanics Conference, (16–18 July 2003), Seattle, Washington. [Google Scholar]
- S.S. Bang, J.K. Galinat, V. Ramakrishnan, Calcite precipitation induced by polyurethaneimmobilized Bacillus pasteurii, Enzyme, and Microbial Technology, 28 (4), (2001) 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3. [CrossRef] [Google Scholar]
- J. Dick, W. De Windt, B. De Graef, H. Saveyn, P. Van der Meeren, N. De Belie, W. Verstraete, Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species, Biodegradation, 17 (4), (2006) 357–367. DOI: 10.1007/s10532005-9006-x. [CrossRef] [Google Scholar]
- H. W. Reinhardt, M. Jooss, Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem. Concr. Res, 33, 981–985 (2003). https://doi.org/10.1016/S0008-8846(02)01099-2. [CrossRef] [Google Scholar]
- I. Justo-Reinoso, B.J. Reeksting, C. Hamley-Bennett, A. Heath, S. Gebhard, K. Paine, Air-entraining admixtures as a protection method for bacterial spores in selfhealing cementitious composites: healing evaluation of early and later-age cracks, Constr. Build. Mater, 327, 126877 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126877. [CrossRef] [Google Scholar]
- H. Chen, C. Qian, H. Huang, Self-healing cementitious materials based on bacteria and nutrients immobilized respectively, Constr. Build. Mater, 126, 297–303 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.023. [CrossRef] [Google Scholar]
- J. Zhang, Y. Liu, T. Feng, M. Zhou, L. Zhao, A. Zhou, Z. Li, Immobilizing bacteria in expanded perlite for the crack self-healing in concrete, Constr. Build. Mater, 148, 610–617 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.021. [CrossRef] [Google Scholar]
- M. Rauf, W. Khaliq, R.A. Khushnood, I. Ahmed, Comparative performance of different bacteria immobilized in natural fibers for self-healing in concrete, Constr. Build. Mater, 258, 119578 (2020). doi.org/10.1016/j.conbuildmat.2020.119578. [CrossRef] [Google Scholar]
- M. Zamani, S. Nikafshar, A. Mousa, A. Behnia, Bacteria encapsulation using synthesized polyurea for self-healing of cement paste, Constr. Build. Mater, 249, 118556 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118556. [CrossRef] [Google Scholar]
- J. Wang, K. Van Tittelboom, N. De Belie, W. Verstraete, Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Constr. Build. Mater, 26 (1), 532–540 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.054. [CrossRef] [Google Scholar]
- C. C. Gavimath, B. M. Mali, V. R. Hooli, J. D. Mallpur, A. B. Patil, D. P. Gaddi, C.R. Ternikar and B.E. Ravishankera, Potential application of Bacteria to improve the strength of cement concrete, (2010). [Google Scholar]
- C. M. Aldea, W. J. Song, J. S. Popovics, S. P. Shah, Extent of healing of cracked normal strength concrete. J. Mater. Civ. Eng, 12, 92–96 (2000). https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(92). [CrossRef] [Google Scholar]
- C. Edvardsen, Water permeability and autogenous healing of cracks in concrete. ACI Mater. J, 96, 448–454 (1999). [Google Scholar]
- S. Jacobsen, E. J. Sellevold, Self-healing of high strength concrete after deterioration by freeze/thaw. Cem. Concr. Res, 26, 55–62 (1995). https://doi.org/10.1016/0008-8846(95)00179-4. [Google Scholar]
- V. Wiktor, and H. M. Jonkers, Quantification of crack-healing in novel bacteriabased self-healing concrete, Cement and Concrete Composites, 33 (7), 763-770 (2011). https://doi.org/10.1016/j.cemconcomp.2011.03.012. [CrossRef] [Google Scholar]
- C. A. Clear, The Effects of Autogenous Healing upon the Leakage of Water through Cracks in Concrete; Cement and Concrete Association: Slough, UK, p. 28 (1985). [Google Scholar]
- M. Şahmaran, S. B. Keskin, G. Ozerkan, I. O. Yaman, Self-healing of mechanicallyloaded self-consolidating concretes with high volumes of fly ash. Cem. Concr. Compos, 30, 872–879 (2008). https://doi.org/10.1016/j.conbuildmat.2020.118556. [CrossRef] [Google Scholar]
- S. Reddy, Rajaratnam, M. SeshagiriRao, Sasikala. Mathematical Model for Predicting Stress-Strain Behaviour of Bacterial Concrete, 8 (7), 470-479 (2010). [Google Scholar]
- J. Dick, W. Windt, B. Graef, H. Saveyn, P. Meeren, N. De Belie, W. Verstraete, Biodeposition of a calcium carbonate layer on degraded limestone by Bacillus species, Biodegradation, 17 (4), 357–367 (2006). [CrossRef] [Google Scholar]
- F. Hammes, N. Boon, J. de Villiers, W. Verstraete, S.D. Siciliano, Strain-specific ureolytic microbial calcium carbonate precipitation, Applied and Environment Microbiology, 69 (8), 4901–4909 (2003). [CrossRef] [Google Scholar]
- Office of Environmental Health and Safety; Washington State Department of Health. Larvicide: Bacillus sphaericus, (2006). <http://www.doh.wa.gov/ehp/ts/Zoo/WNV/larvicides/Bsphaericus.html#2>. [Google Scholar]
- S. Sookie, S. Bang, K. Johnna, K. Galinata, V. Ramakrishnan, Calcite precipitation induced by polyurethane-immobilized Bacillus, (2009). [Google Scholar]
- S.J. Park, Y.M. Park, W.Y. Chun, W.J. Kim, S.Y. Ghim, Calcite-forming bacteria for compressive strength improvement in mortar, J. Microbiol. Biotechnol, 20 (4) (2010) 782–788. DOI:10.4014/jmb.0911.11015. [Google Scholar]
- R. Peruzzi, T. Poli, L. Toniolo, The experimental test for the evaluation of protective treatments: a critical survey of the capillary absorption index. J Cult Herit, 4(3), 251–4 (2003). https://doi.org/10.1016/S1296-2074(03)00050-5. [CrossRef] [Google Scholar]
- A.K. Galwey, M.E. Brown, Thermal decomposition of ionic solids, Studies in Physical and Theoretical Chemistry 86 (1999). [Google Scholar]
- H. Jonkers, Bacteria-based self-healing concrete, HERON 56 (1), 1-12 (2011). [Google Scholar]
- R. Peruzzi, T. Poli, L. Toniolo. The experimental test for the evaluation of protective treatments: a critical survey of the capillary absorption index. J Cult Herit, 4(3), 251–4 (2003). [CrossRef] [Google Scholar]
- E.V. Tararushkin, V.V. Pisarev, A.G. Kalinichev, Atomistic simulations of ettringite and its aqueous interfaces: structure and properties revisited with the modified ClayFF force field, Cem. Concr. Res, 156, 106759 (2022). [CrossRef] [Google Scholar]
- R. Dupuis, R.J.M. Pellenq, Alkali silica reaction: A view from the nanoscale, Cem. Concr. Res, 152, 106652 (2022). https://doi.org/10.1016/j.cemconres.2009.08.025 [CrossRef] [Google Scholar]
- T. Honorio, M. Maaroufi, S. A. Dandachli, A. Bourdot, Ettringite hysteresis under sorption from molecular simulations, Cem. Concr. Res, 150, 106587 (2021). [CrossRef] [Google Scholar]
- F. Lolli, H. Manzano, J.L. Provis, M.C. Bignozzi, E. Masoero, Atomistic simulations of geopolymer models: the impact of the disorder on structure and mechanics, ACS Appl. Mater. Interfaces, 10 (26), 22809–22820 (2018). [CrossRef] [Google Scholar]
- A. Kunhi Mohamed, S.A. Weckwerth, R.K. Mishra, H. Heinz, R.J. Flatt, Molecular modeling of chemical admixtures; opportunities and challenges, Cem. Concr. Res, 156, 106783 (2022). https://doi.org/10.1016/S0008-8846(02)01099-2. [CrossRef] [Google Scholar]
- R. J. M. Pellenq, A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip, F. J. Ulm, A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences, 106(38), 16102-16107 (2009). [CrossRef] [Google Scholar]
- Alex, A. and Masoero, E., Autogenous healing in cement: A kinetic Monte Carlo simulation of CaCO3 precipitation. In Computational Modelling of Concrete and Concrete Structures, 102-106, (2022). [CrossRef] [Google Scholar]
- CRC Press. Lee, J., Patel, D.S., Kucharska, I., Tamm, L.K. and Im, W., Refinement of OprH-LPS interactions by molecular simulations. Biophysical journal, 112(2), pp.346-355 (2017) [CrossRef] [Google Scholar]
- Jayathilake PG, Gupta P, Li B, Madsen C, Oyebamiji O, González-Cabaleiro R, Rushton S, Bridgens B, Swailes D, Allen B, McGough AS. A mechanistic Individual-based Model of microbial communities. PloS one. 12(8):e0181965, (2017). [CrossRef] [Google Scholar]
- C. Z. Qin, S. M. Hassanizadeh, A. Ebigbo, Pore‐scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates. Water Resources Research, 52(11), 8794-810 (2016). [CrossRef] [Google Scholar]
- D. Redondo, Eduardo, A. Patrick, Bonnaud, H. Manzano, A comprehensive review of CSH empirical and computational models, their applications, and practical aspects, Cement and Concrete Research, 156, 106784 (2022). https://doi.org/10.1016/S0008-8846(02)01099-2. [CrossRef] [Google Scholar]
- M. Dhaarani, K. Prakash, Durability study on hvfa based bacterial concrete—a literature study, International Journal Structural & Civil Engineering, ISSN: 23196009 (2014). [Google Scholar]
- R. Peruzzi, T. Poli, L. Toniolo, The experimental test for the evaluation of protective treatments: a critical survey of the “capillary absorption index”. Journal of Cultural Heritage, 4(3), 251-4 (2003). [CrossRef] [Google Scholar]
- S. Ichiigarashi, A. Hosoda, Takashihitomi, K. Ichiimamoto, Technical committee on self-healing / Repairing Technology in cement-based materials. [Google Scholar]
- Wang, J., Van Tittelboom, K., De Belie, N. and Verstraete, W., Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and building materials, 26(1), 532-540 (2012). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.