Open Access
Issue
MATEC Web Conf.
Volume 383, 2023
22nd Conference on Power System Engineering
Article Number 00024
Number of page(s) 9
DOI https://doi.org/10.1051/matecconf/202338300024
Published online 20 October 2023
  1. K. Jurčáková, R. Kellnerova, P. Prochazka, P. Antoš, Spectral characteristics of turbulent boundary layers – comparison of Particle Image Velocimetry and Thermal Anemometry, in Proceedings of the European Physical Journal Conferences, EPJ Web of Conferences, 213 (2019) [Google Scholar]
  2. R. Kellnerova, K. Jurčáková, P. Prochazka, V. Uruba, Vorticity in the turbulent flow above variously rough surfaces, in Proceedings of the European Physical Journal Conferences, EPJ Web of Conferences, 213(3) (2019) [Google Scholar]
  3. A.E. Perry, W. H. Schofield, P. N. Joubert, Rough wall turbulent boundary layers. Journal of Fluid Mechanics, 37(02) (1969) [Google Scholar]
  4. T. R. Oke, Street design and urban canopy layer climate. Energy and Buildings, 11, 1-3 (1988) [CrossRef] [Google Scholar]
  5. V. Yanovych, D. Duda, V. Uruba, T. Tomášková, Hot-Wire Investigation of Turbulence topology behind blades at different shape qualities, Processes, 10, 522 (2022) [CrossRef] [Google Scholar]
  6. V. Yanovych, D. Duda, V. Uruba, P. Antoš, Anisotropy of turbulent flow behind an asymmetric airfoil, SN Applied Sciences, 3(12) (2021) [CrossRef] [Google Scholar]
  7. D. Coles, The Law of the Wake in the Turbulent Boundary Layer. Journal of Fluid Mechanics, 1 (1956) [Google Scholar]
  8. J. Jiménez, Turbulent Flows Over Rough Wall. Annu. Rev. Fluid Mech., 36 (2004) [Google Scholar]
  9. K. Choi, J. L Lumley. The return to isotropy of homogeneous turbulence. J. Fluid Meach. 436, 59–84 (2001). [CrossRef] [Google Scholar]
  10. N. Kolmogorov, V. Levin, J. C. R. Hunt, O.M. Phillips, and D. Williams. Dissipation of energy in the locally isotropic turbulence, in Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 434, 15–17 (1991) [Google Scholar]
  11. G. K. Batchelor. The Theory of Homogeneous Turbulence, Cambridge University Press, New York, US, (1982) [Google Scholar]
  12. J. L. Lumley, G. Newman. The return to isotropy of homogeneous turbulence. J. Fluid Meach. 82, 161–178 (1977) [CrossRef] [Google Scholar]
  13. L. Caldas, C. Kissner, M. Behn, U. Tapken, R. Meyer, Comparison of techniques for the estimation of flow parameters of fan inflow turbulence from noisy hot-wire data, Fluids, 6(11), 372 (2021) [CrossRef] [Google Scholar]
  14. V. Yanovych, D. Duda, V. Uruba, Structure turbulent flow behind a square cylinder with an angle of incidence. European Journal of Mechanics B/Fluids, 85, 110-123 (2021) [CrossRef] [Google Scholar]
  15. V. Yanovych, D. Duda, V. Uruba, Dimensional analysis parameters of turbulence in the wake of a square cylinder, AIP Conference Proceedings, 2323, 030003 (2021) [CrossRef] [Google Scholar]
  16. Katul, G.G. and Parlange, M.B., Analysis of Land Surface Heat Fluxes using the Orthonormal Wavelet Approach, Water Resource Research, 31, 2743–2749 (1995) [CrossRef] [Google Scholar]
  17. Tritton, D.J., Physical Fluid Dynamics, Second Edition, Oxford University Press, (1988) [Google Scholar]
  18. J.O. Hinze, Turbulence In McGraw-Hill Series in Mechanical Engineering; McGrawHill, Inc.: New York City, USA, (1975) [Google Scholar]
  19. P. Roach, The generation of nearly isotropic turbulence by means of grids, Heat and Fluid Flow, 8(2), 82-92 (1986) [Google Scholar]
  20. La. A. El-Gabry, D. R. Thurman, Ph. E. Poinsatte, in Procedure for determining turbulence length scales using hotwire anemometry, Report No. NASA/TM-2014218403, (2014) [Google Scholar]
  21. A. Trush, S. Pospisil, H. Kozmar, Comparison of turbulence integral length scale determination methods, WIT Transactions on Engineering Sciences, 128, 113-123 (2020). [CrossRef] [Google Scholar]
  22. J. Zhou, R.J. Adrian, S. Balachandra & T. Kendall, Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387 (2004) [Google Scholar]
  23. Z.-T. Xie, O. Coceal, I. P. Castro, Large-eddy simulation of flows over random urbanlike obstacles, Bound. Layer Meteorol., 129 (2008) [Google Scholar]
  24. Castro, Ian. (2009). Turbulent flow over rough walls. [Google Scholar]
  25. G. Tian, Analysis of the unsteady boundary-layer flow over urban-like canopy using large eddy simulation, (2018). [Google Scholar]
  26. J. Jiménez, Turbulent Flows Over Rough Wall. Annu. Rev. Fluid Mech., 36 (2004) [Google Scholar]
  27. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, (1976) [Google Scholar]
  28. Veerasamy, Dhamotharan & Atkin, Chris. A rational method for determining intermittency in the transitional boundary layer. Experiments in Fluids, 61 (2019). [Google Scholar]
  29. R. Gomes, S. Stotz, F. Blaim, R. Niehuis. Hot-flm measurements on a low-pressure turbine linear cascade with bypass transition. J Turbomach, 137(9), (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.