Open Access
Issue
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
Article Number 01028
Number of page(s) 10
DOI https://doi.org/10.1051/matecconf/202338201028
Published online 26 June 2023
  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nature Photonics, vol. 7, no. 11, pp. 861-867, 2013. [CrossRef] [Google Scholar]
  2. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, “Development status of high power fiber lasers and their coherent beam combination,” Science China Information Sciences, vol. 62, no. 4, 2019. [Google Scholar]
  3. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [Invited],” Appl Opt, vol. 53, no. 28, pp. 6554-68, Oct 1 2014. [CrossRef] [Google Scholar]
  4. E. M. Dianov, “Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers,” Light-Science & Applications, vol. 1, May 2012, Art no. e12, doi: 10.1038/lsa.2012.12. [CrossRef] [Google Scholar]
  5. S. Firstov, S. Alyshev, K. Riumkin, M. Melkumov, O. Medvedkov, and E. Dianov, “Watt-level, continuous-wave bismuth-doped all-fiber laser operating at 1.7 μm,” Opt. Lett., vol. 40, no. 18, pp. 4360-4363, 2015. [CrossRef] [Google Scholar]
  6. C. Li, C. Kong, and K. K. Wong, “High energy noise-like pulse generation from a mode-locked thulium-doped fiber laser at 1.7 μm,” IEEE Photonics Journal, vol. 11, no. 6, pp. 1-6, 2019. [Google Scholar]
  7. Y. Xiao, X. Xiao, L. Liu, and H. Guo, “Gain-switched watt-level thulium-doped fiber laser and amplifier operating at 1.7 μm,” High Power Laser Science and Engineering, vol. 10, 2022. [CrossRef] [Google Scholar]
  8. S. K. Gupta, K. Sudarshan, and R. Kadam, “Optical nanomaterials with focus on rare earth doped oxide: A Review,” Materials Today Communications, vol. 27, p. 102277, 2021. [CrossRef] [Google Scholar]
  9. T. Sun, X. Su, Y. Zhang, H. Zhang, and Y. Zheng, “Progress and summary of photodarkening in rare earth doped fiber,” Applied Sciences, vol. 11, no. 21, p. 10386, 2021. [CrossRef] [Google Scholar]
  10. D. Creeden, B. R. Johnson, G. A. Rines, and S. D. Setzler, “High power resonant pumping of Tm-doped fiber amplifiers in core-and cladding-pumped configurations,” Optics Express, vol. 22, no. 23, pp. 29067-29080, 2014. [CrossRef] [Google Scholar]
  11. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photonics, vol. 6, no. 2, pp. 84-92, 2012. [CrossRef] [Google Scholar]
  12. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nature Photonics, vol. 6, no. 7, pp. 423-431, 2012. [CrossRef] [Google Scholar]
  13. D. Kirsch, S. Chen, R. Sidharthan, Y. Chen, S. Yoo, and M. Chernysheva, “Short-wave IR ultrafast fiber laser systems: Current challenges and prospective applications,” Journal of Applied Physics, vol. 128, no. 18, p. 180906, 2020. [CrossRef] [Google Scholar]
  14. M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 mum to 3.4 mum, pumped at 1.7 mum,” Opt Lett, vol. 43, no. 5, pp. 971-974, 2018. [CrossRef] [Google Scholar]
  15. J. X. P. Z.Y.Zhan, M.Liu, A.P.Luo, W.C.Xu, Z.C.Luo, “Recent progress of 1.7 μm ultrafast fiber lasers (Invited),” 2022. [Google Scholar]
  16. J.-X. Chen et al., “1.7-μm dissipative soliton Tm-doped fiber laser,” Photonics Research, vol. 9, no. 5, pp. 873-878, 2021. [CrossRef] [Google Scholar]
  17. S. Chen et al., “All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber,” Optics express, vol. 28, no. 12, pp. 17570-17580, 2020. [CrossRef] [Google Scholar]
  18. C. Li et al., “Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser,” Apl Photonics, vol. 2, no. 12, p. 121302, 2017. [CrossRef] [Google Scholar]
  19. J. Zhang et al., “Single-frequency 1.7-μm Tm-doped fiber laser with optical bistability of both power and longitudinal mode behavior,” Optics Express, vol. 29, no. 14, pp. 21409-21417, 2021. [CrossRef] [Google Scholar]
  20. A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Optics and spectroscopy, vol. 99, pp. 836-842, 2005. [CrossRef] [Google Scholar]
  21. H. Cheng et al., “Deep-brain 2-photon fluorescence microscopy in vivo excited at the 1700 nm window,” Opt. Lett., vol. 44, no. 17, pp. 4432-4435, 2019. [CrossRef] [Google Scholar]
  22. N. G. Horton and C. Xu, “Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm,” Biomedical optics express, vol. 6, no. 4, pp. 1392-1397, 2015. [CrossRef] [Google Scholar]
  23. T. Hasegawa, I. Sogawa, and H. Suganuma, “A near infrared angioscope visualizing lipid within arterial vessel wall based on multi-spectral image in 1.7 μm wavelength band,” in Endoscopic Microscopy VIII, vol. 8575: SPIE, pp. 25-32, 2013. [Google Scholar]
  24. V. V. Alexander et al., “Photothermolysis of sebaceous glands in human skin ex vivo with a 1,708 nm Raman fiber laser and contact cooling,” Lasers in surgery and medicine, vol. 43, no. 6, pp. 470-480, 2011. [CrossRef] [Google Scholar]
  25. M. Tanaka, M. Hirano, K. Murashima, H. Obi, R. Yamaguchi, and T. Hasegawa, “1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel,” Optics express, vol. 23, no. 5, pp. 6645-6655, 2015. [CrossRef] [Google Scholar]
  26. B. Li et al., “Development and measurement of a near-infrared CH4 detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe,” Sensors and Actuators B: Chemical, vol. 225, pp. 188-198, 2016. [CrossRef] [Google Scholar]
  27. I. Mingareev, F. Weirauch, A. Olowinsky, L. Shah, P. Kadwani, and M. Richardson, “Welding of polymers using a 2 μm thulium fiber laser,” Optics & Laser Technology, vol. 44, no. 7, pp. 2095-2099, 2012. [CrossRef] [Google Scholar]
  28. W. H. H.Li, Y.L.Cui, W.X.Peng, Z.F.Wei,, “Progress and Prospect of Fiber Lasers Operating at 1.7 μm Band,” Laser & Optoelectronics Progress, vol. 59, no. 19, 2022. [Google Scholar]
  29. P. Z. Y.Z.Ning, S.He, Q.Li, Y.L.Fan, Y.Liu, “Progress and applications of 1.7 μm waveband fiber laser,” LASER TECHNOLOGY, vol. 47, no. 2, pp. 154-170, 2023. [Google Scholar]
  30. P. Z. Y.Zhang, P.Liu, Q.L.Du, T.S.Wang, L.Z.Zhang, S.F.Tong, H.L.Jiang, “Fiber Light Source at 1.7 μm Wave band and Its Applications,” Laser & Optoelectronics Progress, vol. 53, no. 9, p. 90002, 2016. [Google Scholar]
  31. H. Li, W. Pei, W. Huang, M. Wang, and Z. Wang, “Highly Efficient Nanosecond 1.7 μm Fiber Gas Raman Laser by H2-Filled Hollow-Core Photonic Crystal Fibers,” Crystals, vol. 11, no. 1, 2020. [Google Scholar]
  32. L. Zhang, J. Dong, and Y. Feng, “High-Power and High-Order Random Raman Fiber Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 3, pp. 1-6, 2018. [CrossRef] [Google Scholar]
  33. J. Dong et al., “High order cascaded Raman random fiber laser with high spectral purity,” Optics Express, vol. 26, no. 5, pp. 5275-5280, 2018. [CrossRef] [Google Scholar]
  34. R. Thouroude et al., “Linearly-polarized high-power Raman fiber lasers near 1670 nm,” Laser Physics Letters, vol. 16, no. 2, 2019. [Google Scholar]
  35. Y. Zhang, J. X. Song, J. Ye, J. M. Xu, T. F. Yao, and P. Zhou, “Tunable random Raman fiber laser at 1.7 mu m region with high spectral purity,” Optics Express, vol. 27, no. 20, pp. 28800-28807, Sep 2019. [CrossRef] [Google Scholar]
  36. P. Zhang et al., “1.7 μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission,” Applied Optics, vol. 56, no. 35, pp. 9742-9748, 2017. [CrossRef] [Google Scholar]
  37. P. Z. Z.X.He, D.Wu, “1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump,” Laser & Optoelectronics Progress, vol. 57, no. 07, pp.234-241, 2020. [Google Scholar]
  38. Y. Zhang et al., “Cascaded telecom fiber enabled high-order random fiber laser beyond zero-dispersion wavelength,” Opt. Lett., vol. 45, no. 15, pp. 4180-4183, 2020. [CrossRef] [Google Scholar]
  39. A. Grimes et al., “Hundred-watt CW and Joule level pulsed output from Raman fiber laser in 1.7-μm band,” in Fiber Lasers XVII: Technology and Systems, vol. 11260: SPIE, pp. 234-239, 2020. [Google Scholar]
  40. W. Huang, Z. Li, Y. Cui, Z. Zhou, and Z. Wang, “Efficient, watt-level, tunable 1.7 μm fiber Raman laser in H2-filled hollow-core fibers,” Opt. Lett., vol. 45, no. 2, pp. 475-478, 2020/01/15 2020. [CrossRef] [Google Scholar]
  41. H. Li, W. Huang, Y. Cui, Z. Zhou, and Z. Wang, “Pure rotational stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers,” Optics Express, vol. 28, no. 16, pp. 23881-23897, 2020. [CrossRef] [Google Scholar]
  42. W. Pei, H. Li, W. Huang, M. Wang, and Z. Wang, “All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers,” Molecules, vol. 26, no. 15, p. 4561, 2021. [CrossRef] [Google Scholar]
  43. H. Li et al., “All-fiber gas Raman laser oscillator,” Opt. Lett., vol. 46, no. 20, pp. 5208-5211, 2021. [CrossRef] [Google Scholar]
  44. W. Pei, H. Li, W. Huang, M. Wang, and Z. Wang, “Pulsed fiber laser oscillator at 1.7 microm by stimulated Raman scattering in H(2)-filled hollow-core photonic crystal fibers,” Opt Express, vol. 29, no. 21, pp. 33915-33925, Oct 11 2021. [CrossRef] [Google Scholar]
  45. H.-Y. Chung, W. Liu, Q. Cao, F. X. Kärtner, and G. Chang, “Er-fiber laser enabled, energy scalable femtosecond source tunable from 13 to 17 μm,” Optics Express, vol. 25, no. 14, 2017. [Google Scholar]
  46. P. Zhang et al., “1.7 μm tunable picosecond-pulsed fiber light source based on nonlinear effect combination using a cascaded intensity modulator,” Laser Physics, vol. 28, no. 9, 2018. [Google Scholar]
  47. J. Zeng, A. E. Akosman, and M. Y. Sander, “Supercontinuum Generation From a Thulium Ultrafast Fiber Laser in a High NA Silica Fiber,” IEEE Photonics Technology Letters, vol. 31, no. 22, pp. 1787-1790, 2019. [CrossRef] [Google Scholar]
  48. R. Becheker et al., “High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 μm,” Laser Physics Letters, vol. 15, no. 11, 2018. [Google Scholar]
  49. M. Tang et al., “Low Noise High-Energy Dissipative Soliton Erbium Fiber Laser for Fiber Optical Parametric Oscillator Pumping,” Applied Sciences, vol. 8, no. 11, p. 2161, 2018. [CrossRef] [Google Scholar]
  50. Y. Qin, O. Batjargal, B. Cromey, and K. Kieu, “All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification,” Opt Express, vol. 28, no. 2, pp. 2317-2325, Jan 20 2020. [CrossRef] [Google Scholar]
  51. X. Fang, Z. Wang, and L. Zhan, “Efficient generation of all-fiber femtosecond pulses at 1.7 μ m via soliton self-frequency shift,” Optical Engineering, vol. 56, no. 4, 2017. [Google Scholar]
  52. A. Zach, M. Mohseni, C. Polzer, J. W. Nicholson, and T. Hellerer, “All-fiber widely tunable ultrafast laser source for multimodal imaging in nonlinear microscopy,” Opt. Lett., vol. 44 21, pp. 5218-5221, 2019. [CrossRef] [Google Scholar]
  53. X. Quan, R. Ma, H. Wu, Z. Yong Bai, D. Yuan Fan, and J. Liu, “Low threshold and high spectral purity 1.7 μm random fiber laser based on hybrid gain,” Optics & Laser Technology, vol. 155, 2022. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.