Open Access
MATEC Web Conf.
Volume 382, 2023
6th International Conference on Advances in Materials, Machinery, Electronics (AMME 2023)
Article Number 01008
Number of page(s) 12
Published online 26 June 2023
  1. Bing, H.; Wu, Y.; Zhou, J.; Ming, L.; Sun, S.; Li, X. Atmospheric Deposition of Lead in Remote High Mountain of Eastern Tibetan Plateau, China. Atmospheric Environment 2014, 99, 425–435, doi: 10.1016/j.atmosenv.2014.10.014. [CrossRef] [Google Scholar]
  2. Guan, P.; Zhou, Y. Cheng, S.; Duan, W.; Yao, S. Li, J.; Yue, L. Characteristics of heavy pollution process and source appointment in typical heavy industry cities, China. China Environmental Science 2020, 40, 31–40. [Google Scholar]
  3. Miao, Y.; Kong, X.; Li, C. Distribution and Sources of Polycyclic Aromatic Hydrocarbons in a Karst Groundwater System in a Strongly Industrial City, China. Environmental Science 2019, 40, 239–247, doi: 10.13227/j.hjkx.201805212. [Google Scholar]
  4. Guo, C.; Zhang, H.; Yang, G. Mercury Pollution and Its Control of Agriculture Eco-System in Heavy Industry City, China. Journal of Agro-Environment Science 2000, 245–247, 4, doi: 10.3321/j.issn:1672-2043.2000.04.016. [Google Scholar]
  5. Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal Desorption for Remediation of Contaminated Soil: A Review. Chemosphere 2019, 221, 841–855, doi: 10.1016/j.chemosphere.2019.01.079. [CrossRef] [Google Scholar]
  6. Wen, D.; Fu, R.; Li, Q. Removal of Inorganic Contaminants in Soil by Electrokinetic Remediation Technologies: A Review. Journal of Hazardous Materials 2021, 401, 123345, doi: 10.1016/j.jhazmat.2020.123345. [CrossRef] [Google Scholar]
  7. Hu, W.; Niu, Y.; Zhu, H.; Dong, K.; Wang, D.; Liu, F. Remediation of Zinc-Contaminated Soils by Using the Two-Step Washing with Citric Acid and Water-Soluble Chitosan. Chemosphere 2021, 282, 131092, doi: 10.1016/j.chemosphere.2021.131092. [CrossRef] [Google Scholar]
  8. Cheng, S.; Lin, Q.; Wang, Y.; Luo, H.; Huang, Z.; Fu, H.; Chen, H.; Xiao, R. The Removal of Cu, Ni, and Zn in Industrial Soil by Washing with EDTAOrganic Acids. Arabian Journal of Chemistry 2020, 13, 5160–5170, doi: 10.1016/j.arabjc.2020.02.015. [CrossRef] [Google Scholar]
  9. Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent Advances in Soil Remediation Technology for Heavy Metal Contaminated Sites: A Critical Review. Science of The Total Environment 2022, 838, 156417, doi: 10.1016/j.scitotenv.2022.156417. [CrossRef] [Google Scholar]
  10. Azhar, U.; Ahmad, H.; Shafqat, H.; Babar, M.; Shahzad Munir, H.M.; Sagir, M.; Arif, M.; Hassan, A.; Rachmadona, N.; Rajendran, S.; et al. Remediation Techniques for Elimination of Heavy Metal Pollutants from Soil: A Review. Environmental Research 2022, 214, 113918, doi: 10.1016/j.envres.2022.113918. [CrossRef] [Google Scholar]
  11. Irfan, A.; Amtul, M. Halophytes for Phytoremediation of Hazardous Metal (Loid)s: A Terse Review on Metal Tolerance, Bio-Indication and Hyperaccumulation. Journal of Hazardous Materials 2022, 424, 127309, doi: 10.1016/j.jhazmat.2021.127309 [CrossRef] [Google Scholar]
  12. Shah, V.; Daverey, A. Phytoremediation: A Multidisciplinary Approach to Clean up Heavy Metal Contaminated Soil. Environmental Technology & Innovation 2020, 18, 100774, doi: 10.1016/j.eti.2020.100774. [CrossRef] [Google Scholar]
  13. Li, C.; Tian, L.; Dong, C.; Zhang, Y.; Wang, Y. Experimental study on zinc-lead composite contaminated soil solidified/stabilized by MICP technology combined with porous silicon adsorption materials. Rock and Soil Mechanics 2022, 43, 307–316, doi: 10.16285/j.rsm.2021.1403. [Google Scholar]
  14. Shan, Y.; Liang, J.; Tong, H.; Yuan, J.; Zhao, J. Effect of Different Fibers on Small-Strain Dynamic Properties of Microbially Induced Calcite Precipitation-Fiber Combined Reinforced Calcareous Sand. Constr. Build. Mater. 2022, 322, 126343, doi: 10.1016/j.conbuildmat.2022.126343. [CrossRef] [Google Scholar]
  15. Mu, B.; Liu, X.; Nian, L.; Li, L.; Yang, Y. A Bibliometric Analysis of Research Trends in Soil Remediation from 2011 to 2020. Chinese Agricultural Science Bulletin 2022, 38, 143–151. [Google Scholar]
  16. Huang, Z.; Zhao, P.; Wang, Y.; Ma, Y.; Liu, X. Progress in basic research & development and its application on solidification and stabilization materials of heavy metals in soil. Journal of Agricultural Resources and Environment 2022, 39, 435–445. [Google Scholar]
  17. Li, W.; Ni, P.; Yi, Y. Comparison of Reactive Magnesia, Quick Lime, and Ordinary Portland Cement for Stabilization/Solidification of Heavy Metal-Contaminated Soils. Science of the Total Environment 2019, 671, 741–753, doi: 10.1016/j.scitotenv.2019.03.270 [CrossRef] [Google Scholar]
  18. Shan, Y.; Wang, X.; Cui, J.; Mo, H.; Li, Y. Effects of Clay Mineral Composition on the Dynamic Properties and Fabric of Artificial Marine Clay. J. Mar. Sci. Eng. 2021, 9, 1216, doi: 10.3390/jmse9111216. [CrossRef] [Google Scholar]
  19. Li, Y.; Li, J.; Cui, J.; Shan, Y.; Niu, Y. Experimental Study on Calcium Carbide Residue as a Combined Activator for Coal Gangue Geopolymer and Feasibility for Soil Stabilization. Constr. Build. Mater. 2021, 312, 125465, doi: 10.1016/j.conbuildmat.2021.125465. [CrossRef] [Google Scholar]
  20. Chang, C.; Cao, H.; Tao, L.; Lv, Y.; Dong, M. Advances on Heavy Metal Stability and Reactivation for Soil After Solidification/Stabilization Remediation. Soils 2021, 53, 682–691, doi: 10.13758/ [Google Scholar]
  21. Liu, X.; Luo, S. Study on heavy metals in MSWI fly ash by solidification stabilization technology. Applied Chemical Industry 2022, 51, 816–820, doi: 10.16581/j.cnki.issn1671-3206.20220128.019. [Google Scholar]
  22. Zha, F.; Liu, J.; Xu, L.; Cui, K. Cyclic wetting and drying tests on heavy metal contaminated soils solidified/stabilized by cement Chinese Journal of Geotechnical Engineering 2013, 35, 1246–1252. [Google Scholar]
  23. Liang, S.; Niu, J.; Wang, M.; Liu, Y.; Yi, Y. Experimental study of zinc contaminated sludge solidification with cement and slag. Industrial Construction 2017, 47, 89–94. [Google Scholar]
  24. Chen, L.; Du, Y.; Liu, S.; Jin, F. Experimental study of stress-strain properties of cement treated leadcontaminated soils. Rock and Soil Mechanics 2011, 32, 715–721, doi: 10.16285/j.rsm.2011.03.017. [Google Scholar]
  25. Chen, L.; Liu, S.; Du, Y.; Jin, F. Unconfined compressive strength properties of cement solidified/stabilized lead-contaminated soil. Chinese Journal of Geotechnical Engineering 2010, 32, 1898-1903. [Google Scholar]
  26. Li, X.; Zhang, J.; Chen, D.; Sun, J.; Hou, Z.; Sun, B.; Wang, C. Strength and Leaching for Remediation of Chromium Contaminated Soil Using Cement. Bulletin of the Chinese Ceramic Society 2017, 36, 979-983+990. [Google Scholar]
  27. Xiong, L. Research on Meachinacs and Frost Resistance of Cement Solidified Hexavalent Chromium Contaminated Soils. Inner Mongolia Agricultural University 2018. [Google Scholar]
  28. Xiong, L.; Shen, X.; Xue, H.; Li, G.; Yuan, Q.; Zhou, Y. Experimental Research of Mechanical Properties and Microstructure of Cement Solidified Hexavalent Chromium Contaminated Soils. Journal of Ecology and Rural Environment 2018, 34, 946–954. doi: 10.11934/j.issn.1673-4831.2018.10.012. [Google Scholar]
  29. Luo, Y.; Mu, W.; Zhou, X.; Huang, J.; Luo, Z.; Ma, Y.; Wang, L.; Shao, Z. Research progress on solidification/stabilization mechanism and properties of heavy metals using magnesium phosphate cement. Environmental Chemistry 2021, 40, 3875–3886. [Google Scholar]
  30. Zhang, T.; Li, J.; Wang, P.; Huang, Q.; Xue, Q. Experimental study of mechanical and microstructure properties of magnesium phosphate cement treated lead contaminated soils. Rock and Soil Mechanics 2016, 279–286, doi: 10.16285/j.rsm.2016.S2.034. [Google Scholar]
  31. Zhang, T.; Li, J.; Wang, P.; Li, Z. Experimental study of stress-strain properties of lead-contaminated soils treated by magnesium phosphate cement. Rock and Soil Mechanics 2016, 215–225, doi: 10.16285/j.rsm.2016.S1.028. [Google Scholar]
  32. Hou, S.; Zhang, F.; Gao, G.; Liu, X.; Ding, Z. Engineering Characteristics of Magnesium Phosphate Cement Solidified Copper Contaminated Soil. Science Technology and Engineering 2021, 21, 2105–2111. [Google Scholar]
  33. Hou, S.; Zhang, Y.; Li, H.; Zhang, Y.; Zhang, Y.; Ding, Z. Experimental Study on Leaching Characteristics of Copper Cu-contaminated Soil Cured by Magnesium Phosphate Cement under Freeze-thaw Cycles. Science Technology and Engineering 2020, 20, 1993–1999. [Google Scholar]
  34. Hou, S.; Zhang, H.; Yang, Z.; Zhang, Y.; Zhang, Y.; Ding, Z. Study on freeze-thaw stability of Cucontaminated soil solidified by magnesium phosphate cement. Chinese Journal of Rock Mechanics and Engineering 2020, 3123–3129. [Google Scholar]
  35. Zha, F.; Xu, L.; Cui, K. Strength characteristics of heavy metal contaminated soils stabilized/solidified by cement. Rock and Soil Mechanics 2012, 33, 652-656+664, doi: 10.16285/j.rsm.2012.03.003. [Google Scholar]
  36. Yin, C.-Y.; Mahmud, H.B.; Shaaban, M.G. Stabilization/Solidification of Lead-Contaminated Soil Using Cement and Rice Husk Ash. Journal of Hazardous Materials 2006, 137, 1758–1764, doi: 10.1016/j.jhazmat.2006.05.013. [CrossRef] [Google Scholar]
  37. Agency, E. Review of Scientific Literature on the Use of Stabilisation/Solidification for the Treatment of Contaminated Soil, Solid Waste and Sludges. 2004. [Google Scholar]
  38. Zhang, T.; Wang, P.; Li, J.; Wang, Y.; Xue, Q.; Wang, S. Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement. Rock and Soil Mechanics 2018, 39, 2115–2123, doi: 10.16285/j.rsm.2016.1844. [Google Scholar]
  39. Zhang, Y. Study on engineering characteristics of solidified/stabilized chromium-contaminated soil by soil stabilizer and biochar. Northwest A&F University, 2018. [Google Scholar]
  40. Zhu, C.; Pan, L.; Yu, C.; Wang, H.; Jiang, J.; Liao, R. Mechanical properties and microstructure characteristics of cement solidification pollution soil from Wenzhou. Journal of Civil and Environmental Engineering 2018, 40, 117–123. [Google Scholar]
  41. Du, Y.-J.; Wei, M.-L.; Reddy, K.R.; Jin, F.; Wu, H.-L.; Liu, Z.-B. New Phosphate-Based Binder for Stabilization of Soils Contaminated with Heavy Metals: Leaching, Strength and Microstructure Characterization. Journal of Environmental Management 2014, 146, 179–188, doi: 10.1016/j.jenvman.2014.07.035. [CrossRef] [Google Scholar]
  42. Sanderson, P.; Naidu, R.; Bolan, N.; Lim, J.E.; Ok, Y.S. Chemical Stabilisation of Lead in Shooting Range Soils with Phosphate and Magnesium Oxide: Synchrotron Investigation. Journal of Hazardous Materials 2015, 299, 395–403, doi: 10.1016/j.jhazmat.2015.06.056. [CrossRef] [Google Scholar]
  43. Feng, Y.-S.; Du, Y.-J.; Reddy, K.R.; Xia, W.-Y. Performance of Two Novel Binders to Stabilize Field Soil with Zinc and Chloride: Mechanical Properties, Leachability and Mechanisms Assessment. Construction and Building Materials 2018, 189, 1191–1199, doi: 10.1016/j.conbuildmat.2018.09.072. [CrossRef] [Google Scholar]
  44. Wang, L.; Chen, L.; Guo, B.; Tsang, D.C.W.; Huang, L.; Ok, Y.S.; Mechtcherine, V. Red Mud-Enhanced Magnesium Phosphate Cement for Remediation of Pb and As Contaminated Soil. Journal of Hazardous Materials 2020, 400, 123317, doi: 10.1016/j.jhazmat.2020.123317. [CrossRef] [Google Scholar]
  45. Dima, J.B.; Sequeiros, C.; Zaritzky, N.E. Hexavalent Chromium Removal in Contaminated Water Using Reticulated Chitosan Micro/Nanoparticles from Seafood Processing Wastes. Chemosphere 2015, 141, 100–111, doi: 10.1016/j.chemosphere.2015.06.030. [CrossRef] [Google Scholar]
  46. Moghimi, F.; Jafari, A.H.; Yoozbashizadeh, H.; Askari, M. Adsorption Behavior of Sb(III) in Single and Binary Sb(III)—Fe(II) Systems on Cationic Ion Exchange Resin: Adsorption Equilibrium, Kinetic and Thermodynamic Aspects. Transactions of Nonferrous Metals Society of China 2020, 30, 236– 248, doi: 10.1016/S1003-6326(19)65195-2. [CrossRef] [Google Scholar]
  47. Angkawijaya, A.E.; Santoso, S.P.; Bundjaja, V.; Soetaredjo, F.E.; Gunarto, C.; Ayucitra, A.; Ju, Y.-H.; Go, A.W.; Ismadji, S. Studies on the Performance of Bentonite and Its Composite as Phosphate Adsorbent and Phosphate Supplementation for Plant. Journal of Hazardous Materials 2020, 399, 123130, doi: 10.1016/j.jhazmat.2020.123130. [CrossRef] [Google Scholar]
  48. Gorski, C.A.; Fantle, M.S. Stable Mineral Recrystallization in Low Temperature Aqueous Systems: A Critical Review. Geochimica et Cosmochimica Acta 2017, 198, 439–465, doi: 10.1016/j.gca.2016.11.013. [CrossRef] [Google Scholar]
  49. Wang, H.; Wang, X.; Ma, J.; Xia, P.; Zhao, J. Removal of Cadmium (II) from Aqueous Solution: A Comparative Study of Raw Attapulgite Clay and a Reusable Waste–Struvite/Attapulgite Obtained from Nutrient-Rich Wastewater. Journal of Hazardous Materials 2017, 329, 66–76, doi: 10.1016/j.jhazmat.2017.01.025. [CrossRef] [Google Scholar]
  50. Lai, Z.; Lai, X.; Shi, J.; Lu, Z. Effect of Zn2+ on the Early Hydration Behavior of Potassium Phosphate Based Magnesium Phosphate Cement. Construction and Building Materials 2016, 129, 70–78, doi: 10.1016/j.conbuildmat.2016.11.002. [CrossRef] [Google Scholar]
  51. Li, Y.; Fang, J. Study on the Solidification Performance and Mechanism of Magnesium Phosphate Cement with Volatile Heavy Metal Pb2 + and Cd2 +. Bulletin of the Chinese Ceramic Society 2019, 38, 901-904+917. [Google Scholar]
  52. Wang, J.; Ma, B.; Li, X.; Li, H.; Tian, Z. The solidification and hydration products of magnesium phosphate cement with Pd2+, Zn2+ and Cu2+. Journal of Functional Materials 2014, 45, 5060–5064. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.