Open Access
Issue |
MATEC Web Conf.
Volume 381, 2023
1st International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2023)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 9 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202338101016 | |
Published online | 13 June 2023 |
- F. Ozkul and D. E. Barkana, “Design and control of an upper limb exoskeleton robot RehabRoby,” in Conference Towards Autonomous Robotic Systems, 2011, pp. 125–136. [CrossRef] [Google Scholar]
- T. Nef, M. Mihelj, and R. Riener, “ARMin: a robot for patient-cooperative arm therapy,” Med. & Biol. Eng. & Comput., vol. 45, no. 9, pp. 887–900, 2007. [CrossRef] [Google Scholar]
- M. Cenciarini and A. M. Dollar, “Biomechanical considerations in the design of lower limb exoskeletons,” in 2011 IEEE International conference on rehabilitation robotics, 2011, pp. 1–6. [Google Scholar]
- J. N. Clarke, “Cancer, heart disease, and AIDS: What do the media tell us about these diseases?,” Health Commun., vol. 4, no. 2, pp. 105–120, 1992. [CrossRef] [Google Scholar]
- T.-H. Liou, F. X. Pi-Sunyer, and B. Laferrere, “Physical disability and obesity,” Nutr. Rev., vol. 63, no. 10, pp. 321–331, 2005. [CrossRef] [Google Scholar]
- C. M. Stinear, C. E. Lang, S. Zeiler, and W. D. Byblow, “Advances and challenges in stroke rehabilitation,” Lancet Neurol., vol. 19, no. 4, pp. 348–360, 2020. [CrossRef] [Google Scholar]
- Y. Chen, K. T. Abel, J. T. Janecek, Y. Chen, K. Zheng, and S. C. Cramer, “Home-based technologies for stroke rehabilitation: A systematic review,” Int. J. Med. Inform., vol. 123,pp. 11–22, 2019. [CrossRef] [Google Scholar]
- V. Klamroth-Marganska, “Stroke rehabilitation: therapy robots and assistive devices,” Sex-Specific Anal. Cardiovasc. Funct., pp. 579–587, 2018. [CrossRef] [Google Scholar]
- C. O’Neill et al., “Inflatable soft wearable robot for reducing therapist fatigue during upper extremity rehabilitation in severe stroke,” IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 3899–3906, 2020. [CrossRef] [Google Scholar]
- A. Rodriguez-Fernández, J. Lobo-Prat, and J. M. Font-Llagunes, “Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments,” J. Neuroeng. Rehabil., vol. 18, no. 1, pp. 1–21, 2021. [CrossRef] [Google Scholar]
- D. Wei et al., “Human-in-the-loop control strategy of unilateral exoskeleton robots for gait rehabilitation,” IEEE Trans. Cogn. Dev. Syst., vol. 13, no. 1, pp. 57–66, 2019. [Google Scholar]
- T. Yan, M. Cempini, C. M. Oddo, and N. Vitiello, “Review of assistive strategies in powered lower-limb orthoses and exoskeletons,” Rob. Auton. Syst., vol. 64,pp. 120–136, 2015. [CrossRef] [Google Scholar]
- T. Yan, M. Cempini, C. Maria, and N. Vitiello, “Review of assistive strategies in powered lower-limb orthoses and exoskeletons,” Rob. Auton. Syst., vol. 64, pp. 120–136, 2015, doi: 10.1016/j.robot.2014.09.032. [CrossRef] [Google Scholar]
- F. Lanotte, Z. McKinney, L. Grazi, B. Chen, S. Crea, and N. Vitiello, “Adaptive control method for dynamic synchronization of wearable robotic assistance to discrete movements: Validation for use case of lifting tasks,” IEEE Trans. Robot., vol. 37, no. 6, pp. 2193–2209, 2021. [CrossRef] [Google Scholar]
- S. H. Shah, M. Arsalan, S. G. Khan, M. T. Khan, and M. S. Alam, “Design and compliance control of a robotic gripper for orange harvesting,” in 2019 22nd International Multitopic Conference (INMIC), 2019, pp. 1–5. [Google Scholar]
- Y. H. Tsoi and S. Q. Xie, “Impedance control of ankle rehabilitation robot,” in 2008 IEEE International Conference on Robotics and Biomimetics, 2009, pp. 840–845. [CrossRef] [Google Scholar]
- M. M. Ataei, H. Salarieh, and A. Alasty, “An adaptive impedance control algorithm; application in exoskeleton robot,” Sci. Iran., vol. 22, no. 2, pp. 519–529, 2015. [Google Scholar]
- I. W. Widhiada, I. N. Budiarsa, I. M. Widiyarta, and T. Coglitore, “Comparison of PID and fuzzy logic to control the motions of robotic prosthetic limbs,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 673, no. 1, p. 12109. [Google Scholar]
- F. Cao, Y. Li, and J. Shi, “Adaptive sliding mode impedance control in lower limbs rehabilitation robotic,” in 2013 Chinese Automation Congress, 2013, pp. 310–315. [CrossRef] [Google Scholar]
- S. H. Shah, S. G. Khan, I. U. Haq, K. Shah, and A. Abid, “COMPLIANCE CONTROL of ROBOTIC WALK ASSIST DEVICE VIA INTEGRAL SLIDING MODE CONTROL,” Proc. 2019 16th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2019, pp. 515–520, 2019, doi: 10.1109/IBCAST.2019.8667148. [Google Scholar]
- Z. Shen, Y. Zhuang, J. Zhou, J. Gao, and R. Song, “Design and Test of Admittance Control with Inner Adaptive Robust Position Control for a Lower Limb Rehabilitation Robot,” Int. J. Control. Autom. Syst., vol. 18, no. 1, pp. 134–142, 2020, doi: 10.1007/s12555-018-0477-z. [CrossRef] [Google Scholar]
- A. Liu, W.-A. Zhang, L. Yu, H. Yan, and R. Zhang, “Formation control of multiple mobile robots incorporating an extended state observer and distributed model predictive approach,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 50, no. 11, pp. 4587–4597, 2018. [Google Scholar]
- M. Arsalan, M. Tufail, S. G. Khan, and S. H. Shah, “Adaptive Learning Inertia Control of Lower Limb Exoskeleton Robot.,” in 2021 International Conference on Robotics and Automation in Industry (ICRAI), 2021, pp. 1–6. [Google Scholar]
- J. J. Craig, Introduction to robotics. Pearson Educacion, 2006. [Google Scholar]
- D. A. Winter, Biomechanics and Motor Control of Human Movement: Fourth Edition. 2009. doi: 10.1002/9780470549148. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.