Open Access
Issue |
MATEC Web Conf.
Volume 380, 2023
4th International Symposium on Mechanics, Structures and Materials Science (MSMS 2023)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/202338001014 | |
Published online | 01 May 2023 |
- Zheng Dongzhen, Wang Shaomei. Pollution of petrochemicals on the environment and strategies to cope with it[J]. Contemporary Chemical Research, 2022, No.111(10):62-64. [Google Scholar]
- Kearns D, Calvin M. Photovoltaic Effect and Photoconductivity in Laminated Organic Systems[J]. The Journal of Chemical Physics, 1958, 29(4):950-951. [CrossRef] [Google Scholar]
- Kroto H W, Heath J R, O’brien S C, et al. C60:Buckminsterfullerene[J]. Nature, 1985, 318(6042):162-163. [NASA ADS] [CrossRef] [Google Scholar]
- Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J].Advanced materials, 2015, 27(7): 1170-1174. [CrossRef] [Google Scholar]
- Yuan J, Zhang Y Q, Zhou L Y, et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core[J]. Joule, 2019, 3(4):1140-1151. [CrossRef] [Google Scholar]
- Yang Y, Zhang Z G, Bin H, et al. Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells[J].Journal of the American Chemical Society, 2016, 138(45): 15011-15018. [CrossRef] [Google Scholar]
- Bin H, Zhang Z G, Gao L, et al. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency[J].Journal of the American Chemical Society, 2016, 138(13): 4657-4664. [CrossRef] [Google Scholar]
- Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun[J]. 2016 Dec 1;7:13651. [Google Scholar]
- Xue L, Yang Y, Xu J, et al. Side chain engineering on medium bandgap copolymers to suppress triplet formation for high‐efficiency polymer solar cells[J]. Advanced Materials, 2017, 29(40), 1703344. [CrossRef] [Google Scholar]
- Fei Z, Eisner F D, Jiao X, et al. An alkylated indacenodithieno [3, 2-b] thiophene‐based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses[J]. Advanced Materials, 2018, 30(8): 1705209. [CrossRef] [Google Scholar]
- Xiao Y, Ma R, Zhou G, et al. Ternary blending driven molecular reorientation of non-fullerene acceptor IDIC with backbone order[J]. ACS Applied Energy Materials, 2020, 3(11): 10814-10822. [CrossRef] [Google Scholar]
- Shi X, Liao X, Ke G, et al. An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As‐Cast High Performance Binary Organic Solar Cells[J]. Advanced Functional Materials, 2018, 28(33), 1802324. [CrossRef] [Google Scholar]
- Zhao W, Li S, Yao H, et al. Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells[J]. Journal of the American Chemical Society, 2017, 139(21):7148. [CrossRef] [Google Scholar]
- Su D, Pan M A, Liu Z, et al. A Trialkylsilylthienyl Chain-Substituted Small-Molecule Acceptor with Higher LUMO Level and Reduced Band Gap for Over 16% Efficiency Fullerene-Free Ternary Solar Cells[J]. Chemistry of Materials, 2019, 31 (21):8908-8917. [CrossRef] [Google Scholar]
- Wang H, Liu T, Zhou J, et al. Bromination: an alternative strategy for non‐fullerene small molecule acceptors[J]. Advanced Science, 2020, 7(9): 1903784. [CrossRef] [Google Scholar]
- Cai J, Zhang X, Guo C, et al. Asymmetric and Halogenated Fused‐Ring Electron Acceptor for Efficient Organic Solar Cells[J]. Advanced Functional Materials, 2021, 31(31): 2102189. [CrossRef] [Google Scholar]
- Salleo A, Kline R J, DeLongchamp D M, et al. Microstructural characterization and charge transport in thin films of conjugated polymers[J]. Advanced Materials, 2010, 22(34): 3812-3838. [CrossRef] [Google Scholar]
- Ruijie Ma, Tao Liu, Zhenghui Luo, et al. Improving open-t voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17% [J]. Science China(Chemistry), 2020, 63(03):325-330. [Google Scholar]
- Xie G, Zhang Z, Su Z, et al. 16.5% efficiency ternary organic photovoltaics with two polymer donors by optimizing molecular arrangement and phase separation[J]. Nano Energy, 2020, 69: 104447. [CrossRef] [Google Scholar]
- Tang Y, Yu J, Sun H, et al. Two compatible polymer donors enabling ternary organic solar cells with a small nonradiative energy loss and broad composition tolerance[J]. Solar RRL, 2020, 4(11): 2000396. [CrossRef] [Google Scholar]
- Yu R, Yao H, Cui Y, et al. Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells[J]. Advanced Materials, 2019, 31(36):1902302.1-1902302.8. [Google Scholar]
- Yan T, Song W, Huang J, et al. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy[J]. Advanced materials, 2019, 31(39): 1902210. [CrossRef] [Google Scholar]
- Pan M A, Lau T K, Tang Y, et al. 16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the opencircuit voltage and phase purity[J]. Journal of Materials Chemistry A, 2019, 7(36): 20713-20722. [Google Scholar]
- Zhou Pengchao, Zhang Weidong, Gu Jialu, Chen Huimin, Hu Tengda, Pu Huayan, Lan Weixia, Wei Bin. Efficient organic solar cells based on ternary non-fullerene system[J]. Journal of Physics, 2020, 69(19):374-382. [Google Scholar]
- Y. Lin, J. Wang, Z.-G. Zhang, et al.An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells[J]. Advanced Materials, 2015, 27, 1170. [CrossRef] [Google Scholar]
- Li K, Wu Y, Tang Y, et al. Ternary Blended Fullerene‐Free Polymer Solar Cells with 16.5% Efficiency Enabled with a Higher‐LUMO‐Level Acceptor to Improve Film Morphology[J]. Advanced Energy Materials, 2019, 9(33). [Google Scholar]
- Li S, Zhan L, Jin Y, et al. Asymmetric electron acceptors for high‐efficiency and low‐energy‐loss organic photovoltaics[J]. Advanced Materials, 2020, 32(24): 2001160. [CrossRef] [Google Scholar]
- Li D, Zhu L, Liu X, et al. Enhanced and balanced charge transport boosting ternary solar cells over 17% efficiency[J]. Advanced Materials, 2020, 32(34): 2002344. [CrossRef] [Google Scholar]
- Tang H, Chen H, Yan C, et al. Delicate morphology control triggers 14.7% efficiency all‐small‐molecule organic solar cells[J]. Advanced Energy Materials, 2020, 10(27): 2001076. [CrossRef] [Google Scholar]
- Zhang M, Zhu L, Hao T, et al. Organic Solar Cells: High‐Efficiency Organic Photovoltaics using Eutectic Acceptor Fibrils to Achieve Current Amplification[J]. Advanced Materials, 2021, 33(18): 2170142. [CrossRef] [Google Scholar]
- Zeng, Yihan, Li, Danqin, Wu, Hongbo, et al. Enhanced Charge Transport and Broad Absorption Enabling Record 18.13% Efficiency of PM6:Y6 Based Ternary Organic Photovoltaics with a High Fill Factor Over 80%[J]. 2022, 32(13):2110743.1-2110743.9. [Google Scholar]
- Fu J, Chen S, Yang K, et al. A “σ-Hole”-Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells[J]. iScience, 2020, 23(3):100965. [CrossRef] [Google Scholar]
- Zhang Q, Bao C, Cui S, et al. Boosting the efficiency of PTB7-Th:PC 71 BM polymer solar cells via a low-cost halogen-free supramolecular solid additive[J]. Journal of Materials Chemistry C, 2020, 8(46): 16551-16560. [Google Scholar]
- Hoff A, Martell M, Gasonoo A, et al. Sidechain‐ Engineered N‐PDIs Processed from Ethyl Acetate as Effective Cathode Interlayers for Organic Solar Cells[J]. Advanced Engineering Materials, 2022: 2201437. [CrossRef] [Google Scholar]
- Hartnett P E, Margulies E A, Matte H, et al. Effects of Crystalline Perylenediimide Acceptor Morphology on Optoelectronic Properties and Device Performance[J]. Chemistry of Materials, 2016, 28(11), 3928-3936. [CrossRef] [Google Scholar]
- Cheng P, Zhang M, Lau T K, et al. Realizing Small Energy Loss of 0.55 eV, High Open-Circuit Voltage >1 V and High Efficiency >10% in Fullerene-Free Polymer Solar Cells via Energy Driver[J]. Advanced Materials, 2017, 29(11), 1605216. [CrossRef] [Google Scholar]
- Shivanna R, Shoaee S, Dimitrov S, et al. Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor[J]. Energy & Environmental Science, 2014, 7(1):435-441. [CrossRef] [Google Scholar]
- D Meng, D Sun, C Zhong, et al. High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor[J].Journal of the American Chemical Society, 2016, 138(1): 375-380. [CrossRef] [Google Scholar]
- Yu Y, Yang F, Ji Y, et al. A perylene bisimide derivative with a LUMO level of−4.56 eV for nonfullerene solar cells[J]. Journal of Materials Chemistry C, 2016, 4(19): 4134-4137. [Google Scholar]
- Chen H, Wang L, Sun H, et al. PDI-based heteroacenes as acceptors for fullerene-free solar cells: importance of their twisted geometry[J]. New Journal of Chemistry, 2020, 44(30): 13093-13099. [CrossRef] [Google Scholar]
- Wang H, Chen L, Xiao Y. Oxygen-ether-bridged perylene diimide dimers: Efficient synthesis, properties, and photovoltaic performance[J]. Dyes and Pigments, 2020, 180:108508. [CrossRef] [Google Scholar]
- Li G, Yang W, Wang S, et al. Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells[J]. Journal of Materials Chemistry C, 2019, 7. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.