Open Access
MATEC Web Conf.
Volume 379, 2023
18e Congrès de la Société Française de Génie des Procédés (SFGP2022)
Article Number 08001
Number of page(s) 9
Section Eau : un enjeu du futur / Water: A Challenge for the Future
Published online 12 May 2023
  1. Aichouche, F., B. Benyahia, M. Héran and J. Harmand (2020b) Flexibility of Waste Resource Recovery Facilities for water Reuse,” 2020 European Control Conference (ECC), Saint Petersburg, Russia, 2020, pp. 570-574, doi: 10.23919/ECC51009.2020.9143734. [Google Scholar]
  2. Aichouche, F. (2021) Contribution of modelling and control approaches to improve the flexibility of treatment systems for REUSE of treated wastewater in agriculture, PhD Thesis, Univ. of Montpellier, defensed on the 2nd of March 2021. [Google Scholar]
  3. Ait Mouheb, N., G. Bourrié, B. Ben Thayer, B. Benyahia, B. Cherki, N. Condom, R. Declercq, M. Héran, R. Khalifa, B. Molle, D. Patureau, P. Renault, B. Romagny, C. Sinfort, J. P. Steyer, T. Sari, N. Wery and J. Harmand (2018) The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle?, Regional Environmental Change, Vol. 18, No. 3, pp. 693-705, DOI: 10.1007/s10113-018-1292-z [CrossRef] [Google Scholar]
  4. Besson, M., S. Berger, L. Tiruta-barna, E. Paul, M. Spérandio (2021) Environmental assessment of urine, black and grey water separation for resource recovery in a new district compared to centralized wastewater resources recovery plant. Journal of Cleaner Production 301, 126868. [CrossRef] [Google Scholar]
  5. Boumaza, K., Kalboussi, N. Rapaport, A., Roux, S. Sinfort, C. (2021) Optimal control of a crop irrigation model under water scarcity. Optimal Control, Applications and Methods, 42(6), 1612-1632 [CrossRef] [Google Scholar]
  6. Besson, M., L. Tiruta-Barna, E. Paul, M. Sperandio (2022) La séparation à la source pour une récupération des ressources : outil d’évaluation environnementale: Source separation for resource recovery: a tool for environmental assessment. TSM 5, 41–48. [CrossRef] [Google Scholar]
  7. Haddon, A., J. Harmand, A. Rapaport, S. Roux. Control models for crop management: Application to Wastewater Reuse. British Applied Mathematics Colloquium, 11-13 April 2022, [Google Scholar]
  8. Heran, M., W. Dai, G. Lesage, J. Harmand (2022) Comment orienter les procédés pour offrir de la flexibilité dans nos unités de traitement pour valoriser au mieux les nutriments ?, SFGP2022, 7-10 Novembre 2022, Toulouse. [Google Scholar]
  9. De Paepe, J., K. De Paepe, F. Gòdia, K. Rabaey, S.E. Vlaeminck, P. Clauwaert (2020) Bioelectrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification, Water Research, 185, 116223. [CrossRef] [Google Scholar]
  10. Fumasoli, A., B. Etter, B. Sterkele, E. Morgenroth, K. M. Udert, 2016. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Science and Technology 73, 215–222. [CrossRef] [Google Scholar]
  11. Gonzalez-Salgado, I., X. Lefebvre, M. Bounouba, E. Mengelle, S. Dubos, O. Lorain, E. Trouvé, C. Guigui, M. Spérandio (2020) N and P Recovery from Urine and Digestate by Struvite Formation and Transmembrane Chemisorption. Presented at the IWA Nutrient removal and recovery conference, Helsinki, Finland. [Google Scholar]
  12. Harder, R., R. Wielemaker, T.A. Larsen, G. Zeeman, G. Öberg (2019) Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Critical Reviews in Environmental Science and Technology 49, 695–743. [CrossRef] [Google Scholar]
  13. Hug, A. et K.M. Udert (2013) Struvite precipitation from urine with electrochemical magnesium dosage. Water Research 47, 289–299. [CrossRef] [Google Scholar]
  14. Jefferson, B., A.L. Laine, T. Stephenson, S.J. Judd (2001) Advanced biological unit processes for domestic water recycling. Water Sci. Technol. 43, 211–218. [CrossRef] [Google Scholar]
  15. Kalboussi, N., Roux, S., Cheviron, B., Harmand, J., Rapaport, A., Sinfort, C. (2018) Apport de la modélisation pour l’aide à la décision en vue de la réutilisation agricole des eaux usées traitées. Journal International Sciences et Techniques de l’Eau et de l’Environnement, Association Scientifique et Technique pour l’Eau et l’Environnement en Tunisie, 3 (1), 102-107. ⟨hal-01975462v3⟩ [Google Scholar]
  16. Larsen, T.A., M.E. Riechmann, K.M. Udert (2021) State of the art of urine treatment technologies: A critical review. Water Research X 13, 100114. [CrossRef] [Google Scholar]
  17. Lesjean, B. et R. Gnirss (2006) Grey water treatment with a membrane bioreactor operated at low SRT and low HRT. Desalination 199, 432–434. [CrossRef] [Google Scholar]
  18. Liu, Y., L.F. He, Y.Y. Deng, Q. Zhang, G.M. Jiang, H. Liu (2022) Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review. Chemical Engineering Journal 442, 136200. [CrossRef] [Google Scholar]
  19. Martin, T.M.P., F. Esculier, F. Levavasseur, S. Houot (2020) Human urine-based fertilizers: A review. Critical Reviews in Environmental Science and Technology 1–47. [Google Scholar]
  20. Merz, C., R. Scheumann, B. El Hamouri, M. Kraume (2007) Membrane bioreactor technology for the treatment of greywater from a sports and leisure club. Desalination 215, 37–43. [CrossRef] [Google Scholar]
  21. Neto, Otacílio B.L., A. Haddon, F. Aichouche, J. Harmand, M. Mulas, F. Corona (2021) Predictive control of activated sludge plants to supply nitrogen for optimal crop growth IFAC-PapersOnLine, Volume 54, No. 3, pp. 200-205, [Google Scholar]
  22. Peter-Fröhlich, A., L. Pawlowski, A. Bonhomme, M. Oldenburg (2007) EU demonstration project for separate discharge and treatment of urine, faeces and greywater – Part I: Results. Water Science and Technology 56, 239–249. [CrossRef] [Google Scholar]
  23. Pradhan, S., S.G. Al-Ghamdi, H.R. Mackey (2019) Greywater recycling in buildings using living walls and green roofs: A review of the applicability and challenges. Science of The Total Environment 652, 330–344. [CrossRef] [Google Scholar]
  24. Skambraks, A.-K., H. Kjerstadius, M. Meier, Å. Davidsson, M. Wuttke, T. Giese (2017) Source separation sewage systems as a trend in urban wastewater management: Drivers for the implementation of pilot areas in Northern Europe. Sustainable Cities and Society 28, 287–296. [CrossRef] [Google Scholar]
  25. Udert, K.M., C.A. Buckley, M. Wächter, C.S. McArdell, T. Kohn, L. Strande, H. Zöllig, A. Fumasoli, A. Oberson, B. Etter (2016) Technologies for the treatment of source-separated urine in the eThekwini Municipality. Water SA 41, 212. [CrossRef] [Google Scholar]
  26. Udert, K.M., M. Wächter (2012) Complete nutrient recovery from source-separated urine by nitrification and distillation. Water Research 46, 453–464. [CrossRef] [Google Scholar]
  27. Zamora, P., T. Georgieva, A. Ter Heijne, T.H.J.A. Sleutels, A.W. Jeremiasse, M. Saakes, C.J.N. Buisman, P. Kuntke (2017) Ammonia recovery from urine in a scaled-up Microbial Electrolysis Cell. Journal of Power Sources 356, 491–499. [CrossRef] [Google Scholar]
  28. UN Water (2018) Sustainable Development Goal 6 Synthesis Report on Water and Sanitation, Published by the United Nations New York, New York 10017, United States of America. [Google Scholar]
  29. Van Loosdrecht, M. C. M. et D. Brdjanovic (2014) Anticipating the next century of wastewater treatment, Science, Vol. 344, pp. 1452, [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.