Open Access
Issue
MATEC Web Conf.
Volume 379, 2023
18e Congrès de la Société Française de Génie des Procédés (SFGP2022)
Article Number 06003
Number of page(s) 8
Section Procédés pour la Santé / Processes for Health and Biomedical Engineering
DOI https://doi.org/10.1051/matecconf/202337906003
Published online 12 May 2023
  1. « Infections nosocomiales ⋅ Inserm, La science pour la santé » Inserm. https://www.inserm.fr/dossier/infections-nosocomiales [Google Scholar]
  2. Perelshtein, I.; Lipovsky, A.; Perkas, N.; Tzanov, T.; Arguirova, M.; Leseva, M.; Gedanken, A, Making the hospital a safer place by sonochemical coating of all its textiles with antibacterial nanoparticles, Ultrason. Sonochem., 2015, vol. 25, p. 82-88 [CrossRef] [Google Scholar]
  3. Nanobiotechnology: An Ocean of Opportunities. Apple Academic Press, 2020, p. 1-21. [Google Scholar]
  4. Dhanasegaran, K.; Djearamane, S.; Liang, S.; Wong, L.; Kasivelu, G.; Lee, P.; Lim, Y, Antibacterial properties of zinc oxide nanoparticles on Pseudomonas aeruginosa (ATCC 27853), Sci. Iran., 2021, vol. 28, 6. [Google Scholar]
  5. Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R, Alternative Antimicrobial Approach: Nano-Antimicrobial Materials, Evid. Based Complement. Alternat. Med., 2015, vol. 2015, p. e246012. [Google Scholar]
  6. Dizaj, S.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.; Adibkia, K, Antimicrobial activity of the metals and metal oxide nanoparticles, Mater. Sci. Eng. C, 2014, vol. 44, p. 278-284. [CrossRef] [Google Scholar]
  7. Medina-Ramírez, I.; Díaz de León-Macias, C.; Pedroza-Herrera, G.; Gonzáles-Segovia, R.; Zapien, J.; Rodríguez-López, J, Evaluation of the biocompatibility and growth inhibition of bacterial biofilms by ZnO, Fe3O4 and ZnO@Fe3O4 photocatalytic magnetic materials, Ceram. Int., 2020, vol. 46, p. 8979-8994. [Google Scholar]
  8. Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A, Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains, Mater. Sci. Eng. C Mater. Biol. Appl., 2019, vol. 104, p. 109968. [CrossRef] [Google Scholar]
  9. Znaidi, L, Sol–gel-deposited ZnO thin films: A review, Mater. Sci. Eng. B, 2010, vol. 174, p. 18-30. [CrossRef] [Google Scholar]
  10. Znaidi, L.; Illia, G.; Guennic, R.; Sanchez, C.; Kanaev, A, Elaboration of ZnO Thin Films with Preferential Orientation by a Soft Chemistry Route, J. Sol-Gel Sci. Technol., 2003, vol. 26, p. 817-821. [CrossRef] [Google Scholar]
  11. Kurtaran, S.; Kavlak, D.; Kürkçüoğlu, G, Vibrational Frequencies and Structural Determination of Triethanolamine and Diethanolamine by Density Functional Theory Calculations, Turkish Physical Society, 2008, INIS-TR-131. [Google Scholar]
  12. Yang, M.; Crerar, D.; Irish, D, A Raman spectroscopic study of lead and zinc acetate complexes in hydrothermal solutions, Geochim. Cosmochim. Acta, 1989, vol. 53, p. 319-326. [CrossRef] [Google Scholar]
  13. Yoshikawa, M.; Inoue, K.; Nakagawa, T.; Ishida, H.; Hasuike, N.; Harima, H, Characterization of ZnO nanoparticles by resonant Raman scattering and cathodoluminescence spectroscopies, Appl. Phys. Lett., 2008, vol. 92, p. 113-115. [Google Scholar]
  14. Mirijam, Z.; Galina, M.; Kolb, U.; Neder, R., Room-temperature sol-gel synthesis of organic ligandcapped ZnO nanoparticles, J Nanopart Res 17, 2015, 200. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.