Open Access
Issue
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
Article Number 09003
Number of page(s) 6
Section Computational Modelling Related to Self-Healing and Repair of Cementitious Materials
DOI https://doi.org/10.1051/matecconf/202337809003
Published online 28 April 2023
  1. C. Edvardsen, (PhD Thesis) Water permeability and autogenous healing of cracks in concrete, RWTH Aachen, (1996). [Google Scholar]
  2. D. Lahmann, C. Edvardsen, S. Kessler, Autogenous self-healing of concrete: Experimental design and test methods - A review, Eng. Reports. e12565, 33 (2022). [Google Scholar]
  3. M. Roig-Flores, P. Serna, Concrete early-age crack closing by autogenous healing, Sustain. 12, 4476 (2020). [CrossRef] [Google Scholar]
  4. R.A. Berner, The role of magnesium in the crystal growth of calcite and aragonite from sea water, Geochim. Cosmochim. Acta. 39, 495–504 (1975). [Google Scholar]
  5. M.R. Nielsen, K.K. Sand, J.D. Rodriguez-Blanco, N. Bovet, J. Generosi, K.N. Dalby, S.L.S. Stipp, Inhibition of Calcite Growth: Combined Effects of Mg2+ and SO42-, Cryst. Growth Des. 16, 6199–6207 (2016). [CrossRef] [Google Scholar]
  6. D. Palin, H.M. Jonkers, V. Wiktor, Autogenous healing of sea-water exposed mortar: Quantification through a simple and rapid permeability test, Cem. Concr. Res. 84, 1–7 (2016). [CrossRef] [Google Scholar]
  7. D. Palin, V. Wiktor, H.M. Jonkers, Autogenous healing of marine exposed concrete: Characterization and quantification through visual crack closure, Cem. Concr. Res. 73, 17–24 (2015). [CrossRef] [Google Scholar]
  8. L.J. Parrot, D.C. Killoh, Prediction of Cement Hydration, in: Br. Ceram. Soc. Meet. Chemistry Chem. Relat. Prop. Cem., Imperial College, London, 1–13 (1984). [Google Scholar]
  9. N. Holmes, M. Tyrer, R. West, A. Lowe, D. Kelliher, Using PHREEQC to model cement hydration, Constr. Build. Mater. 319, 126129 (2022). [CrossRef] [Google Scholar]
  10. D.L. Parkhurst, C.A.J. Appelo, Description of input and examples for PHREEQC Version 3 — A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, (2013). [Google Scholar]
  11. B. Lothenbach, D.A. Kulik, T. Matschei, M. Balonis, L. Baquerizo, B. Dilnesa, G.D. Miron, R.J. Myers, Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials, Cem. Concr. Res. 115, 472–506 (2019). [CrossRef] [Google Scholar]
  12. B. Lothenbach, G. Le Saout, E. Gallucci, K. Scrivener, Influence of liemstone on the hydration of Portland cements, Cem. Concr. Res. 38, 848–860 (2008). [CrossRef] [Google Scholar]
  13. B.Z. Dilnesa, E. Wieland, B. Lothenbach, R. Dähn, K.L. Scrivener, Fe-containing phases in hydrated cements, Cem. Concr. Res. 58, 45–55 (2014). [CrossRef] [Google Scholar]
  14. H.F.W. Taylor, A method for predicting alkazi ion concentrations in cement pore solutions, Adv. Cem. Res. 1, 5–17 (1987). [CrossRef] [Google Scholar]
  15. S.D. Cohen, A.C. Hindmarsh, P.F. Dubois, CVODE, A Stiff/Nonstiff ODE Solver in C, Comput. Phys. 10, 138–143 (1996). [CrossRef] [Google Scholar]
  16. Hamburg Wasser, Tap water from Glinde, Chem. Anal. Tap, https://www.hamburgwasser.de/privatkunden/service/mein-wasserwerk/wasserwerk/wasserwerk-glinde, accessed: 08.11.2022, (2021). [Google Scholar]
  17. LENNTECH, Major ion composition of seawater (mg/L), Water Cond. Purif, https://www.lenntech.com/composition-seawater.htm, accessed: 18.11.2022, (2005). [Google Scholar]
  18. R. Loser, B. Lothenbach, A. Leemann, M. Tuchschmid, Chloride resistance of concrete and its binding capacity - Comparison between experimental results and thermodynamic modeling, Cem. Concr. Compos. 32, 34–42 (2010). [CrossRef] [Google Scholar]
  19. K. De Weerdt, B. Lothenbach, M.R. Geiker, Comparing chloride ingress from seawater and NaCl solution in Portland cement mortar, Cem. Concr. Res. 115, 80–89 (2019). [CrossRef] [Google Scholar]
  20. R.G. Patel, D.C. Killoh, L.J. Parrott, W.A. Gutteridge, Influence of curing at different relative humidities upon compound reactions and porosity in Portland cement paste, Mater. Struct. 21, 192–197 (1988). [CrossRef] [Google Scholar]
  21. M. Maes, (PhD Thesis) Combined effects of chlorides and sulphates on cracked and self-healing concrete in marine environments, Ghent University, (2015). [Google Scholar]
  22. K. Van Tittelboom, E. Gruyaert, H. Rahier, N. De Belie, Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation, Constr. Build. Mater. 37, 349–359 (2012). [CrossRef] [Google Scholar]
  23. A. Putnis, Introduction to mineral sciences, Cambridge University Press, Cambridge New York Port Chester Melbourne Sydney, (1992). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.