Open Access
Issue
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
Article Number 02022
Number of page(s) 5
Section Self-Healing Cementitious Materials
DOI https://doi.org/10.1051/matecconf/202337802022
Published online 28 April 2023
  1. Aldea, C.M.; Song, W.J.; Popovics, J.S.; Shah, S.P. Extent of Healing of Cracked Normal Strength Concrete. J. Mater. Civ. Eng. (2000) [Google Scholar]
  2. De Rooij, M.R.; Schlangen, E. Self-Healing Phenomena in Cement-Based Materials; State-of-the-Art Report of RILEM Technical Committee 221-SHC; Springer: Cham, Switzerland (2011) [Google Scholar]
  3. Ferrara, L.; Van Mullem, T.; Alonso, M.C.; Antonaci, P.; Borg, R.P.; Cuenca, E.; Jefferson, A.; Ng, P.-L.; Peled, A.; Roig-Flores, M.; et al. Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Constr. Build. Mater., 167, 115–142 (2018) [CrossRef] [Google Scholar]
  4. Aldea, C.-M.; Shah, S.P.; Karr, A. Permeability of cracked concrete. Mater. Struct, 32, 370–376 (1999) [CrossRef] [Google Scholar]
  5. Borg, R.P.; Cuenca, E.; Gastaldo Brac, E.M.; Ferrara, L. Crack sealing capacity in chloride rich environments of mortars containing different cement substitutes and crystalline admixtures. J. Sustain. Cement Based Mater, 7, 141–159 (2017) [Google Scholar]
  6. Gruyaert, E.; Debbaut, B.; Snoeck, D.; Diaz, P.; Arizo, A.; Tziviloglou, E.; Schlangen, E.; De Belie, N. Self-healing mortar with pH-sensitive superabsorbent polymers: Testing of the sealing efficiency by water flow tests. Smart Mater. Struct, 25, 084007 (2016) [CrossRef] [Google Scholar]
  7. Tang, W.; Kardani, O.; Cui, H. Robust evaluation of self-healing efficiency in cementitious materials -A review. Constr. Build. Mater, 81, 233–247 (2015) [CrossRef] [Google Scholar]
  8. Lee, K.-M.; Kim, H.-S.; Lee, D.-K.; Shin, K.-J. Self-Healing Performance Evaluation of Concrete Incorporating Inorganic Materials Based on a Water Permeability Test. Materials, 14, 3202 (2021) [CrossRef] [Google Scholar]
  9. Litina, C.; Bumanis, G.; Anglani, G.; Dudek, M.; Maddalena, R.; Amenta, M.; Papaioannou, S.; Pérez, G.; Garcia Calvo, J.L.; Asensio, E.; et al. Evaluation of Methodologies for Assessing Self-Healing Performance of Concrete with Mineral Expansive Agents: An Interlaboratory Study. Materials, 14 (2021) [Google Scholar]
  10. Edvardsen, C. Water Permeability and Autogenous Healing of Cracks in Concrete. ACI Mater. J, 96, 448–454 (1999) [Google Scholar]
  11. Lepech, M.; Li, V.C. Water permeability of engineered cementitious composites. Cem. Concr. Compos, 31, 744–753 (2009) [CrossRef] [Google Scholar]
  12. Shin, K.J.; Bae, W.; Choi, S.W.; Son, M.W.; Lee, K.M. Parameters influencing water permeability coefficient of cracked concrete specimens. Constr. Build. Mater, 151, 907–915 (2017) [CrossRef] [Google Scholar]
  13. Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res, 40, 157–166 (2010) [CrossRef] [Google Scholar]
  14. Tziviloglou, E.; Wiktor, V.; Wang, J.; Paine, K.; Alazhari, M.; Richardson, A.; Gueguen, M.; De Belie, N.; Schlangen, E.; Jonkers, H. Evaluation of experimental methodology to assess the sealing efficiency of bacteria-based selfhealing concrete: Round Robin test. In Proceedings of the International RILEM Conference on Microorganisms-cementitious Materials Interactions, RILEM Pro 02, Delft, The Netherlands, Wiktor, V., Jonkers, H., Bertron, A., Eds.; Rilem: Paris, France; pp. 156–170 (2016) [Google Scholar]
  15. Roig-Flores, M.; Moscato, S.; Serna, P.; Ferrara, L. Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater, 86, 1–11 (2015) [CrossRef] [Google Scholar]
  16. Roig-Flores, M.; Pirritano, M.; Serna, P.; Ferrara, L. Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Construction Build Master. v. 114 p. 447–457 (2016) [CrossRef] [Google Scholar]
  17. Yi, S.T.; Hyun, T.Y.; Kim, J.K. The effects of hydraulic pressure and crack width on water permeability of penetration crack-induced concrete. Constr. Build. Mater, 25, 2576–2583 (2011) [CrossRef] [Google Scholar]
  18. K. Sisomphon, O. Copuroglu, E.A.B. Koenders. Selfhealing of surface cracks in mortars with expansive additive and crystalline additive. Cement & Concrete Composites 34, 566–574 (2012) [CrossRef] [Google Scholar]
  19. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto – procedimento. Rio de Janeiro, 2014. [Google Scholar]
  20. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10787: Concreto endurecido - Determinaçâo da penetração de água sob pressão. Rio de Janeiro (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.