Open Access
Issue
MATEC Web Conf.
Volume 378, 2023
SMARTINCS’23 Conference on Self-Healing, Multifunctional and Advanced Repair Technologies in Cementitious Systems
Article Number 02008
Number of page(s) 6
Section Self-Healing Cementitious Materials
DOI https://doi.org/10.1051/matecconf/202337802008
Published online 28 April 2023
  1. K. L. Scrivener, V. M. John, and E. M. Gartner, “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry,” Cem Conor Res, vol. 114, pp. 2–26, Dec. 2018, DOI: 10.1016/J.CEMCONRES.2018.03.015. [CrossRef] [Google Scholar]
  2. “Technology Roadmap: Low-Carbon Transition in the Cement Industry,” IEA, CSI & WBCSD, 2018. https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/Resources/Technology-Roadmap-Low-Carbon-Transition-in-the-Cement-Industry (accessed Jul. 13, 2022). [Google Scholar]
  3. “The Paris Agreement | UNFCCC,” United Nations, 2015. [Google Scholar]
  4. “The European Green Deal,” European Comission, 2019. [Google Scholar]
  5. W. Zhang, Q. Zheng, A. Ashour, and B. Han, “Self-healing cement concrete composites for resilient infrastructures: A review,” Compos B Eng, vol. 189, p. 107892, May 2020, DOI: 10.1016/J.COMPOSITESB.2020.107892. [CrossRef] [Google Scholar]
  6. S. Mann, “Biomineralization: principles and concepts in bioinorganic materials chemistry,” 2001. [Google Scholar]
  7. J. Wang, K. van Tittelboom, N. de Belie, and W. Verstraete, “Use of silica gel or polyurethane immobilized bacteria for self- healing concrete,” Constr Build Mater, vol. 26, no. 1, pp. 532–540, Jan. 2012, DOI: 10.1016/J.CONBUILDMAT.2011.06.054. [CrossRef] [Google Scholar]
  8. S. S. Bang, J. J. Lippert, U. Yerra, S. Mulukutla, and V. Ramakrishnan, “Microbial calcite, a bio-based smart nanomaterial in concrete remediation,” http://dx.doi.org/10.1080/19475411003593451, vol. 1, no. 1, pp. 28–39, 2010, DOI: 10.1080/19475411003593451. [Google Scholar]
  9. J. Y. Wang, N. de Belie, and W. Verstraete, “Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete,” J Ind Microbiol Biotechnol, vol. 39, no. 4, pp. 567–577, Apr. 2012, DOI: 10.1007/S10295-011-1037-1. [CrossRef] [Google Scholar]
  10. H. Singh and R. Gupta, “Cellulose fiber as bacteria-carrier in mortar: Self-healing quantification using UPV,” Journal of Building Engineering, vol. 28, p. 101090, Mar. 2020, DOI: 10.1016/J.JOBE.2019.101090. [CrossRef] [Google Scholar]
  11. L. Jiang, G. Jia, C. Jiang, and Z. Li, “Sugar- coated expanded perlite as a bacterial carrier for crack-healing concrete applications,” Constr Build Mater, vol. 232, p. 117222, Jan. 2020, DOI: 10.1016/J.CONBUILDMAT.2019.117222. [CrossRef] [Google Scholar]
  12. M. T. Mustafa and B. B. Zeynep, “Use of Natural Minerals to Immobilize Bacterial Cells for Remediating Cracks in Cement-Based Materials,” Journal of Materials in Civil Engineering, vol. 34, no. 3, p. 04021461, Mar. 2022, DOI: 10.1061/(ASCE)MT.1943-5533.0004098. [CrossRef] [Google Scholar]
  13. M. M. Tezer, “Development of two-phase biological self-healing agents for cement-based mortar,” 2020. [Google Scholar]
  14. N. De Belie, J. Wang, Z. B. Bundur, and K. Paine, “Bacteria-based concrete,” Eco-efficient Repair and Rehabilitation of Concrete Infrastructures, pp. 531–567, Jan. 2018, DOI: 10.1016/B978-0-08-102181-1.00019-8. [CrossRef] [Google Scholar]
  15. D. Yang, G. Xu, Y. Duan, and S. Dong, “Self- healing cement composites based on bleaching earth immobilized bacteria,” J Clean Prod, vol. 358, p. 132045, Jul. 2022, DOI: 10.1016/J.JCLEPRO.2022.132045. [CrossRef] [Google Scholar]
  16. K. Liu et al., “Effects of Pumice-Based Porous Material on Hydration Characteristics and Persistent Shrinkage of Ultra-High Performance Concrete (UHPC),” Materials 2019, Vol. 12, Page 11, vol. 12, no. 1, p. 11, Dec. 2018, DOI: 10.3390/MA12010011. [CrossRef] [Google Scholar]
  17. Q. Wang, J. Zhang, and J. C. M. Ho, “Zeolite to improve strength-shrinkage performance of high-strength engineered cementitious composite,” Constr Build Mater, vol. 234, p. 117335, Feb. 2020, DOI: 10.1016/J.CONBUILDMAT.2019.117335. [CrossRef] [Google Scholar]
  18. C. Wu and S. Kou, “Effects of high-calcium sepiolite on the rheological behaviour and mechanical strength of cement pastes and mortars,” Constr Build Mater, vol. 196, pp. 105–114, Jan. 2019, DOI: 10.1016/J.CONBUILDMAT.2018.11.130. [CrossRef] [Google Scholar]
  19. “ASTM C305-14, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency,” ASTM International. 2014. [Google Scholar]
  20. “ASTM C109/C109M-21, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens),” ASTM International. 2021. [Google Scholar]
  21. “ASTM C191-19, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle,” ASTM International. 2019. [Google Scholar]
  22. “ASTM C596-18, Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement,” ASTM International. 2018. [Google Scholar]
  23. “ASTM C157/C157M-17, Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete,” ASTM International. 2017. [Google Scholar]
  24. A. Amiri and Z. B. Bundur, “Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance,” Constr Build Mater, vol. 165, pp. 655–662, Mar. 2018, DOI: 10.1016/j.conbuildmat.2018.01.070. [CrossRef] [Google Scholar]
  25. A. Amiri, M. Azima, and Z. B. Bundur, “Crack remediation in mortar via biomineralization: Effects of chemical admixtures on biogenic calcium carbonate,” Constr Build Mater, vol. 190, pp. 317–325, Nov. 2018, DOI: 10.1016/J.CONBUILDMAT.2018.09.083. [CrossRef] [Google Scholar]
  26. Z. Basaran Bundur, M. J. Kirisits, and R. D. Ferron, “Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength,” Cem Concr Res, vol. 67, pp. 237–245, 2015, DOI: 10.1016/j.cemconres.2014.10.002. [CrossRef] [Google Scholar]
  27. J. K. Norvell, J. G. Stewart, M. C. Juenger, and D. W. Fowler, “Influence of Clays and Clay- Sized Particles on Concrete Performance,” Journal of Materials in Civil Engineering, vol. 19, no. 12, pp. 1053–1059, Dec. 2007, DOI: 10.1061/(ASCE)0899-1561(2007)19:12(1053). [CrossRef] [Google Scholar]
  28. X. Gao, S. Kawashima, X. Liu, and S. P. Shah, “Influence of clays on the shrinkage and cracking tendency of SCC,” Cem Concr Compos, vol. 34, no. 4, pp. 478–485, Apr. 2012, DOI: 10.1016/J.CEMCONCOMP.2012.01.002. [CrossRef] [Google Scholar]
  29. J. A. Carmona, P. Ramirez, L. A. Trujillo-Cayado, A. Caro, and J. Muñoz, “Rheological and microstructural properties of sepiolite gels. Influence of the addition of ionic surfactants,” Journal of Industrial and Engineering Chemistry, vol. 59, pp. 1–7, Mar. 2018, DOI: 10.1016/J.JIEC.2017.09.030. [CrossRef] [Google Scholar]
  30. J. Pinilla Melo, A. Sepulcre Aguilar, and F. Hernandez Olivares, “Rheological properties of aerated cement pastes with fly ash, metakaolin and sepiolite additions,” Constr Build Mater, vol. 65, pp. 566–573, Aug. 2014, DOI: 10.1016/J.CONBUILDMAT.2014.05.034. [CrossRef] [Google Scholar]
  31. H. Yang et al., “Effects of bentonite on pore structure and permeability of cement mortar,” Constr Build Mater, vol. 224, pp. 276–283, Nov. 2019, DOI: 10.1016/J.CONBUILDMAT.2019.07.073. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.