Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01012
Number of page(s) 7
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701012
Published online 17 April 2023
  1. S. N. Gebremariam and J. M. Marchetti, “Economics of biodiesel production: Review,” Energy Convers. Manag., vol. 168, no. May, pp. 74–84, 2018, doi: 10.1016/j.enconman.2018.05.002. [CrossRef] [Google Scholar]
  2. R. Shan, G. Chen, B. Yan, J. Shi, and C. Liu, “Porous CaO-based catalyst derived from PSS- induced mineralization for biodiesel production enhancement,” Energy Convers. Manag., vol. 106, pp. 405–413, Dec. 2015, doi: 10.1016/j.enconman.2015.09.064. [CrossRef] [Google Scholar]
  3. P.-M. Yang et al., “Comparison of carbonyl compound emissions from a diesel engine generator fueled with blends of n-butanol, biodiesel and diesel,” Energy, vol. 90, no. 10, pp. 266–273, Oct. 2015, doi: 10.1016/j.energy.2015.06.070. [CrossRef] [Google Scholar]
  4. H. Karabas, “Biodiesel production from crude acorn (Quercus frainetto L.) kernel oil: An optimisation process using the Taguchi method,” Renew. Energy, vol. 53, pp. 384–388, May 2013, doi: 10.1016/j.renene.2012.12.002. [CrossRef] [Google Scholar]
  5. A. Anwar and A. Garforth, “Challenges and opportunities of enhancing cold flow properties of biodiesel via heterogeneous catalysis,” Fuel, vol. 173, pp. 189–208, Jun. 2016, doi: 10.1016/j.fuel.2016.01.050. [CrossRef] [Google Scholar]
  6. Y. Zhou, S. Niu, and J. Li, “Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol,” Energy Convers. Manag., vol. 114, pp. 188–196, Apr. 2016, doi: 10.1016/j.enconman.2016.02.027. [CrossRef] [Google Scholar]
  7. B. Babinszki et al., “Thermal decomposition of biomass wastes derived from palm oil production,” J. Anal. Appl. Pyrolysis, vol. 155, no. February, p. 105069, May 2021, doi: 10.1016/j.jaap.2021.105069. [CrossRef] [Google Scholar]
  8. X. Sun, H. K. Atiyeh, M. Li, and Y. Chen, “Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review,” Bioresour. Technol., vol. 295, p. 122252, 2020, doi: 10.1016/j.biortech.2019.122252. [CrossRef] [Google Scholar]
  9. J. Clohessy and W. Kwapinski, “Carbon-based catalysts for biodiesel production-A review,” Appl. Sci., vol. 10, no. 3, pp. 1–17, 2020, doi: 10.3390/app10030918. [CrossRef] [Google Scholar]
  10. X. J. Lee, L. Y. Lee, B. Y. Z. Hiew, S. Gan, S. Thangalazhy-Gopakumar, and H.K. Ng, “Valorisation of oil palm wastes into high yield and energy content biochars via slow pyrolysis: Multivariate process optimisation and combustion kinetic studies,” Mater. Sci. Energy Technol., vol. 3, pp. 601–610, 2020, doi: 10.1016/j.mset.2020.06.006. [Google Scholar]
  11. I. Reyero, G. Arzamendi, S. Zabala, and L. M. Gandía, “Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel,” Fuel Process. Technol., vol. 129, pp. 147–155, Jan. 2015, doi: 10.1016/j.fuproc.2014.09.008. [CrossRef] [Google Scholar]
  12. K. de Boer and P. A. Bahr, “Investigation of Liquid-Liquid Two Phase Flow in Biodiesel,” in Seventh International Conference on CFD in the Minerals and Process Industries, 2009, pp. 1–6. [Google Scholar]
  13. O. Ogunkunle and N. A. Ahmed, “Performance evaluation of a diesel engine using blends of optimized yields of sand apple (Parinari polyandra) oil biodiesel,” Renew. Energy, vol. 134, pp. 1320–1331, Apr. 2019, doi: 10.1016/j.renene.2018.09.040. [CrossRef] [Google Scholar]
  14. P. L. Boey, G. P. Maniam, S. A. Hamid, and D. M. H. Ali, “Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: Optimization using response surface methodology,” Fuel, vol. 90, no. 7, pp. 2353–2358, 2011, doi: 10.1016/j.fuel.2011.03.002. [CrossRef] [Google Scholar]
  15. C. Anyika, N. A. M. Asri, Z. A. Majid, A. Yahya, and J. Jaafar, “Synthesis and characterization of magnetic activated carbon developed from palm kernel shells,” Nanotechnol. Environ. Eng., vol. 2, no. 1, p. 16, Dec. 2017, doi: 10.1007/s41204-017-0027-6. [CrossRef] [Google Scholar]
  16. K. Liu, L. Xu, and F. Zhang, “A new preparation process of coal-based magnetically activated carbon,” Chinese J. Geochemistry, vol. 33, no. 2, pp. 173–177, Jun. 2014, doi: 10.1007/s11631-014-0674-2. [CrossRef] [Google Scholar]
  17. Wahajuddin and Arora, “Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers,” Int. J. Nanomedicine, vol. 7, p. 3445, Jul. 2012, doi: 10.2147/IJN.S30320. [CrossRef] [Google Scholar]
  18. S. Baroutian, M. K. Aroua, A. A. A. Raman, and N. M. N. Sulaiman, “Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil,” Fuel Process. Technol., vol. 91, no. 11, pp. 1378–1385, Nov. 2010, doi: 10.1016/j.fuproc.2010.05.009. [CrossRef] [Google Scholar]
  19. N. S. El-Gendy, S.F. Deriase, A. Hamdy, and R.I. Abdallah, “Statistical optimization of biodiesel production from sunflower waste cooking oil using basic heterogeneous biocatalyst prepared from eggshells,” Egypt. J. Pet., vol. 24, no. 1, pp. 37–48, Mar. 2015, doi: 10.1016/j.ejpe.2015.02.004. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.