Open Access
Issue |
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 8 | |
Section | Engineering and Technologies for Sustainable Development | |
DOI | https://doi.org/10.1051/matecconf/202337701010 | |
Published online | 17 April 2023 |
- D. Sasi, P. Mitra, A. Vigueras, G.A. Hill, Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor, J. Chem. Technol. Biotechnol. 86, 875–880(2011) [CrossRef] [Google Scholar]
- D. Tang, W. Han, P. Li, X. Miao, J. Zhong, CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels, Bioresour. Technol. 102, 3071–3076 (2011) [CrossRef] [Google Scholar]
- B. Zhao, Y. Zhang, K. Xiong, Z. Zhang, X. Hao, T. Liu, Effect of cultivation mode on microalgal growth and CO2 fixation, Chem. Eng. Res. Des. 89, 1758–1762 (2011) [CrossRef] [Google Scholar]
- S.W. Lim, J. Nandong, Modeling of biohydrogen production using generalized multi-scale kinetic model: Impacts of fermentation conditions, Int. J. Hydrogen Energy. 47, 17926–17945 (2022) [CrossRef] [Google Scholar]
- S. Amin, Review on biofuel oil and gas production processes from microalgae, Energy Convers. Manage. 50, 1834–1840 (2009) [CrossRef] [Google Scholar]
- A. Concas, M. Pisu, G. Cao, Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae, Chem. Eng. J. 157, 297–303 (2010) [CrossRef] [Google Scholar]
- R. Dar, M. Parmar, E. Dar, R. Sani, U. Phutela, Biomethanation of agricultural residues: Potential, limitations, and possible solutions, Renewable and Sustainable Energy Reviews. 135, 110217 (2021) [CrossRef] [Google Scholar]
- K. Chandrasekhar, Y.-J. Lee, D.-W. Lee, Biohydrogen production: strategies to improve process efficiency through microbial routes, International journal of molecular sciences. 16, 8266–8293 (2015) [CrossRef] [Google Scholar]
- P. Mohammadi, S. Ibrahim, M.S.M. Annuar, S. Ghafari, S. Vikineswary, A.A. Zinatizadeh, Influences of environmental and operational factors on dark fermentative hydrogen. Production: a review, CLEAN-Soil, Air, Water 40, 1297–1305 (2012) [CrossRef] [Google Scholar]
- L. Singh, Z.A. Wahid, Methods for enhancing bio-hydrogen production from biological process: a review, Journal of Industrial Engineering Chemistry. 21, 70–80 (2015) [CrossRef] [Google Scholar]
- K. Jaseena, K. Sosamony, Practical Aspects of Hydrogen Production by Dark Fermentation—A Review, IRACST - Engineering Science and Technology: An International Journal. 6, 2250–3498 (2016) [Google Scholar]
- S.W. Ali, S. Bairagi, D. Bhattacharyya, Valorization of agricultural wastes: An approach to impart environmental friendliness, in: A.H.S. Shahid-ul-Islam, Salman Ahmad Khan (Ed.), Handbook of Biomass Valorization for Industrial Applications. 369–393 (2022) [CrossRef] [Google Scholar]
- G.K. Selormey, B. Barnes, F. Kemausuor, L.J.R.I.E.S. Darkwah, A review of anaerobic digestion of slaughterhouse waste: effect of selected operational and environmental parameters on anaerobic biodegradability, Reviews in Environmental Science and Bio/Technology. 20 1073–1086 (2021) [CrossRef] [Google Scholar]
- Das D., Veziroglu T.N. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy. 26, 13–28 (2001) [CrossRef] [Google Scholar]
- Hu B., Li Y., Zhu S., Zhang H., Jing Y., Jiang D., et al. Evaluation of biohydrogen yield potential and electron balance in the photo-fermentation process with different initial pH from starch agricultural leftover. Bioresour Technol. 305, 122900 (2020) [CrossRef] [Google Scholar]
- Ramu S.M., Thulasinathan B., Hari D.G., Bora A., Jayabalan T., Mohammed S.N., et al. Fermentative hydrogen production and bioelectricity generation from food based industrial waste: An integrative approach. Bioresour Technol. 310, 123447 (2020) [CrossRef] [Google Scholar]
- Ramu S.M., Thulasinathan B., Hari D.G., Bora A., Jayabalan T., Mohammed S.N., et al. Fermentative hydrogen production and bioelectricity generation from food based industrial waste: An integrative approach. Bioresour Technol. 310, 123447 (2020) [CrossRef] [Google Scholar]
- Sarkar O., Katari J.K., Chatterjee S., Mohan S.V. Salinity induced acidogenic fermentation of food waste regulates biohydrogen production and volatile fatty acids profile. Fuel. 276, 117794 (2020) [CrossRef] [Google Scholar]
- Karimi Alavijeh M., Yaghmaei S., Mardanpour M.M. Assessment of global potential of biohydrogen production from agricultural residues and its application in nitrogen fertilizer production. BioEnergy Research. 13, 463–476 (2020) [CrossRef] [Google Scholar]
- Kannah R.Y., Kavitha S., Sivashanmugham P., Kumar G., Nguyen D.D., Chang S.W., et al. Biohydrogen production from rice straw: effect of combinative pretreatment, modelling assessment and energy balance consideration. Int J Hydrogen Energy. 44, 2203–2215 (2019) [CrossRef] [Google Scholar]
- Kavitha S., Kannah Y., Gunasekaran M., Kumar G. Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen. Int J Hydrogen Energy. 45, 5890–5899 (2020) [CrossRef] [Google Scholar]
- Kannah R.Y., Kavitha S., Gunasekaran M., Kumar G., Banu J.R., Zhen G. Biohydrogen production from seagrass via novel energetically efficient ozone coupled rotor stator homogenization. Int J Hydrogen Energy. 45, 5881–5889 (2020) [CrossRef] [Google Scholar]
- Kumar M.D., Kannah R.Y., Kumar G., Sivashanmugam P., Banu J.R. A novel energetically efficient combinative microwave pretreatment for achieving profitable hydrogen production from marine macro algae (Ulva reticulate). Bioresour Technol. 301, 122759 (2020) [CrossRef] [Google Scholar]
- Banu J.R., Kavitha S., Kannah R.Y., Bhosale R.R., Kumar G. Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route. Bioresour Technol. 298 122378 (2020) [CrossRef] [Google Scholar]
- Das S.R., Basak N. Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation. Biomass Conversion and Biorefinery. 1–21, (2022) [Google Scholar]
- N. Aryal, N. Ghimire, S. Bajracharya, Coupling of microbial electrosynthesis with anaerobic digestion for waste valorization, Advances in Bioenergy, Elsevier. 101–127 (2020) [CrossRef] [Google Scholar]
- H. Wu, H. Wang, Y. Zhang, G. Antonopoulou, I. Ntaikou, G. Lyberatos, Q.J.B.T. Yan, In situ biogas upgrading via cathodic biohydrogen using mitigated ammonia nitrogen during the anaerobic digestion of Taihu blue algae in an integrated bioelectrochemical system (BES). 341, 125902 (2021) [Google Scholar]
- T.V. Oliveira, L.O. Bessa, F.S. Oliveira, J.S. Ferreira, F.R. Batista, V.L. Cardoso, Insights Into the effect of carbon and nitrogen source on hydrogen production by photosynthetic bacteria, Chem. Eng. Trans. 38, (2014) [Google Scholar]
- Younas, M., Shafique, S., Hafeez, A., Javed, F. and Rehman, F. An overview of hydrogen production: current status, potential, and challenges. Fuel, 316, 123317 (2022) [CrossRef] [Google Scholar]
- M. Azwar, M. Hussain, A.J.R. Abdul-Wahab, S.E. Reviews, Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review, Renewable and Sustainable Energy Reviews 31, 158–173 (2014) [CrossRef] [Google Scholar]
- Q.H. Seer, J. Nandong, Stabilization and PID tuning algorithms for second-order unstable processes with time-delays, ISA transactions 67, 233–245 (2017) [CrossRef] [Google Scholar]
- Q.H. Seer, J. Nandong, Stabilising PID tuning for a class of fourth-order integrating nonminimum-phase systems, International Journal of Control. 6, 1226–1242 (2019) [CrossRef] [Google Scholar]
- J.K.U. Ling, J. Nandong, Y. San Chan, Generalized multi-scale kinetic model for data-driven modelling: Mangifera pajang antioxidant degradation in choline chloride/ascorbic acid natural deep eutectic solvent, J. Food Eng. 312, 110741 (2022) [CrossRef] [Google Scholar]
- A. Ingimundarson, T. Hägglund, Performance comparison between PID and dead-time compensating controllers, J. Process Control 8, 887–895 (2002) [CrossRef] [Google Scholar]
- J.-P. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica 10, 1667–1694 (2003) [CrossRef] [Google Scholar]
- J.E. Normey-Rico, E.F. Camacho, Dead-time compensators: A survey, Control Eng. Pract. 4, 407–428 (2008) [CrossRef] [Google Scholar]
- G. Kyazze, N. Martinez-Perez, R. Dinsdale, G. Premier, F. Hawkes, A.J. Guwy, D. Hawkes, Influence of substrate concentration on the stability and yield of continuous biohydrogen production, Biotechnol. Bioeng. 5, 971–979 (2006) [CrossRef] [Google Scholar]
- Mullai, P., Rene, R.E. and Sridevi, K. Biohydrogen Production and Kinetic Modelling Using Sediment Microorganism of Pichavaram Mangroves, India. Biomed research international 141, 1–9 (2013) [CrossRef] [Google Scholar]
- A. Ciranna, R. Ferrari, V. Santala, M. Karp, Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: kinetic, metabolic and transcription analyses, Int. J. Hydrogen Energy 12, 6391–6401(2014) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.