Open Access
Issue
MATEC Web Conf.
Volume 377, 2023
Curtin Global Campus Higher Degree by Research Colloquium (CGCHDRC 2022)
Article Number 01008
Number of page(s) 6
Section Engineering and Technologies for Sustainable Development
DOI https://doi.org/10.1051/matecconf/202337701008
Published online 17 April 2023
  1. Ma Z.W., Zhang P., Bao H.S., Deng S. Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method. Renew Sustain Energy Rev 2016;53:1273–1302. [CrossRef] [Google Scholar]
  2. Li L., Fan S., Yang G., Chen Q., Zhao J., Wei N., et al. Continuous simulation of the separation process of CO2/H2 by forming hydrate. Chem Eng Sci X 2020;7:100067. [Google Scholar]
  3. Xie N., Tan C., Yang S., Liu Z. Conceptual design and analysis of a novel CO2 hydrate-based refrigeration system with cold energy storage. ACS Sustain Chem Eng 2019;7:1502–1511. [CrossRef] [Google Scholar]
  4. Ngan Y.T., Englezos P. Concentration of mechanical pulp mill effluents and NaCl solutions through propane hydrate formation. Ind Eng Chem Res 1996;35:1894–1900. [CrossRef] [Google Scholar]
  5. Rudolph A., El-Mohamad A., McHardy C., Rauh C. Concentrating model solutions and fruit juices using CO2 hydrate technology and its quantitative effect on phenols, carotenoids, vitamin C and betanin. Foods 2021;10:626. [CrossRef] [Google Scholar]
  6. Hatakeyama T., Aida E., Yokomori T., Ohmura R., Ueda T. Fire extinction using carbon dioxide hydrate. Ind Eng Chem Res 2009;48:4083–4087. [CrossRef] [Google Scholar]
  7. Bhattacharjee G., Linga P. Amino acids as kinetic promoters for gas hydrate applications: A mini review. Energy & Fuels 2021;35:7553–7571. [CrossRef] [Google Scholar]
  8. Sinehbaghizadeh S., Saptoro A., Amjad-Iranagh S., Tiong A.N.T., Mohammadi A.H. Molecular Dynamics Simulation Studies on the Stability and Dissociation of Clathrate Hydrates of Single and Double Greenhouse Gases. Energy & Fuels 2022;36:8323–8339. [CrossRef] [Google Scholar]
  9. Takeuchi F., Hiratsuka M., Ohmura R., Alavi S., Sum A.K., Yasuoka K. Water proton configurations in structures I, II, and H clathrate hydrate unit cells. J Chem Phys 2013;138:124504. [CrossRef] [Google Scholar]
  10. Sinehbaghizadeh S., Saptoro A., Naeiji P., Tiong A.N.T., Mohammadi A.H. Insights into the synergistic effects of metal particles (Ag, Cu, and Fe) and urea on CO2 clathrate hydrate growth using molecular dynamics simulations. Chem Eng Sci 2022;264:118194. [CrossRef] [Google Scholar]
  11. Cadogan S.P., Maitland G.C., Trusler J.P.M. Diffusion Coefficients of CO 2 and N 2 in Water at Temperatures between 298.15 K and 423.15 K at Pressures up to 45 MPa. J Chem Eng Data 2014;59:519–525. [CrossRef] [Google Scholar]
  12. Lu W., Guo H., Chou I.M., Burruss R.C., Li L. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements. Geochim Cosmochim Acta 2013;115:183–204. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.