Open Access
MATEC Web Conf.
Volume 374, 2023
International Conference on Applied Research and Engineering (ICARAE2022)
Article Number 03002
Number of page(s) 10
Section 3- Aspect of Materials Science in Renewable Energy
Published online 05 January 2023
  1. H. Baig, N. Sellami, D. Chemisana, J. Rosell, and T. K. Mallick, “Performance analysis of a dielectric based 3D building integrated concentrating photovoltaic system,” Sol. Energy, vol. 103, pp. 525–540, 2014, doi: 10.1016/j.solener.2014.03.002. [Google Scholar]
  2. M. lin Huo and D. wei Zhang, “Lessons from photovoltaic policies in China for future development,” Energy Policy, vol. 51, no. 2012, pp. 38–45, 2012, doi: 10.1016/j.enpol.2011.12.063. [CrossRef] [Google Scholar]
  3. G. Makrides, B. Zinsser, M. Norton, G. E. Georghiou, H. Werner, and M. Schubert, “Potential of photovoltaic systems in countries with high solar irradiation,” vol. 14, no. September 2008, pp. 754–762, 2020, doi: 10.1016/j.rser.2009.07.021. [Google Scholar]
  4. M. Chandel, G. D. Agrawal, S. Mathur, and A. Mathur, “Case Studies in Thermal Engineering Techno-economic analysis of solar photovoltaic power plant for garment zone of Jaipur city,” Case Stud. Therm. Eng., vol. 2, pp. 1–7, 2014, doi: 10.1016/j.csite.2013.10.002. [Google Scholar]
  5. S. B. Kjaer, J. K. Pedersen, S. Member, and F. Blaabjerg, “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules,” vol. 41, no. 5, pp. 1292–1306, 2005. [Google Scholar]
  6. A. Ameur, A. Sekkat, K. Loudiyi, and M. Aggour, “Energy for Sustainable Development Performance evaluation of different photovoltaic technologies in the region of Ifrane, Morocco,” Energy Sustain. Dev., vol. 52, pp. 96–103, 2019, doi: 10.1016/j.esd.2019.07.007. [Google Scholar]
  7. A. K. Shukla, K. Sudhakar, P. Baredar, and R. Mamat, “Solar PV and BIPV system: Barrier, challenges and policy recommendation in India,” Renew. Sustain. Energy Rev., vol. 82, no. August, pp. 3314–3322, 2018, doi: 10.1016/j.rser.2017.10.013. [Google Scholar]
  8. D. Dirnberger, G. Blackburn, B. Müller, and C. Reise, “On the impact of solar spectral irradiance on the yield of different PV technologies,” Sol. Energy Mater. Sol. Cells, vol. 132, pp. 431–442, 2015, doi: 10.1016/j.solmat.2014.09.034. [Google Scholar]
  9. L. Stamenic, E. Smiley, and K. Karim, “Low light conditions modelling for building integrated photovoltaic (BIPV) systems,” Sol. Energy, vol. 77, no. 1, pp. 37–45, 2004, doi: 10.1016/j.solener.2004.03.016. [Google Scholar]
  10. B. S. evaluation of 10 M. grid connected solar photovoltaic power plant in I. Kumar and K. Sudhakar, “Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India,” Energy Reports, vol. 1, pp. 184–192, 2015, doi: 10.1016/j.egyr.2015.10.001. [Google Scholar]
  11. P. M. Congedo, M. Malvoni, M. Mele, and M. G. De Giorgi, “Performance measurements of monocrystalline silicon PV modules in South-eastern Italy,” Energy Convers. Manag., vol. 68, pp. 1–10, 2013, doi: 10.1016/j.enconman.2012.12.017. [Google Scholar]
  12. H. A. Kazem, M. H. Albadi, A. H. A. Al-waeli, A. H. Al-busaidi, and M. T. Chaichan, “Case Studies in Thermal Engineering Techno-economic feasibility analysis of 1 MW photovoltaic grid connected system in Oman,” Case Stud. Therm. Eng., vol. 10, no. May, pp. 131–141, 2017, doi: 10.1016/j.csite.2017.05.008. [Google Scholar]
  13. M. I. Al-najideen and S. S. Alrwashdeh, “Resource-Efficient Technologies Design of a solar photovoltaic system to cover the electricity demand for the faculty of Engineering- Mu ’ tah University in Jordan,” Resour. Technol., vol. 0, no. 2017, pp. 1–6, 2020, doi: 10.1016/j.reffit.2017.04.005. [Google Scholar]
  14. R. Sharma and S. Goel, “Performance analysis of a 11. 2 kWp roof top grid-connected PV system in Eastern India,” Energy Reports, vol. 3, pp. 76–84, 2017, doi: 10.1016/j.egyr.2017.05.001. [CrossRef] [Google Scholar]
  15. WWW.WeatherAtlas.Com, “No Title.” [Google Scholar]
  16. F. B. Samsuri and M. N. Ahmed, “Performance Evaluation of Two PV Technologies (C-Si and CIS) for Building Integrated Photovoltaic Based on Tropical Climate Condition: A Case Study in Malaysia,” Energy Build., 2016, doi: 10.1016/j.enbuild.2016.03.052. [Google Scholar]
  17. V. Sharma, A. Kumar, O. S. Sastry, and S. S. Chandel, “Performance assessment of different solar photovoltaic technologies under similar outdoor conditions,” Energy, vol. 58, pp. 511–518, 2013, doi: 10.1016/ [CrossRef] [Google Scholar]
  18. D. A. Quansah, M. S. Adaramola, G. K. Appiah, and I. A. Edwin, “Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate,” Int. J. Hydrogen Energy, vol. 42, no. 7, pp. 4626–4635, 2017, doi: 10.1016/j.ijhydene.2016.10.119. [CrossRef] [Google Scholar]
  19. A. K. Shukla, K. Sudhakar, and P. Baredar, “Simulation and performance analysis of 110 kW p grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology,” Energy Reports, vol. 2, pp. 82–88, 2016, doi: 10.1016/j.egyr.2016.04.001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.