Open Access
Issue
MATEC Web Conf.
Volume 374, 2023
International Conference on Applied Research and Engineering (ICARAE2022)
Article Number 02001
Number of page(s) 10
Section 2- Advanced Joining Techniques
DOI https://doi.org/10.1051/matecconf/202337402001
Published online 05 January 2023
  1. O.E. Falodun, E.B. Mtsweni, S.R. Oke, P.A. Olubambi, Influence of Solution Heat Treatment on Microstructure and Mechanical Properties of a Hot-Rolled 2205 Duplex Stainless Steel, J. Mater. Eng. Perform. 30 (2021) 7185–7194. https://doi.org/10.1007/s11665-021-05904-z. [CrossRef] [Google Scholar]
  2. Y. Zhao, C. Dong, Z. Jia, J. You, J. Tan, S. Miao, Y. Yi, Microstructure Characteristics and Corrosion Resistance of Friction Stir Welded 2205 Duplex Stainless Steel, Adv. Mater. Sci. Eng. 2021 (2021). https://doi.org/10.1155/2021/8890274. [Google Scholar]
  3. J. Michalska, M. Sozańska, Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel, Mater. Charact. 56 (2006) 355–362. https://doi.org/10.1016/j.matchar.2005.11.003. [CrossRef] [Google Scholar]
  4. S. Emami, T. Saeid, R.A. Khosroshahi, Microstructural evolution of friction stir welded SAF 2205 duplex stainless steel, J. Alloys Compd. 739 (2018) 678–689. https://doi.org/10.1016/j.jallcom.2017.12.310. [CrossRef] [Google Scholar]
  5. M. Yan, J. na Sun, H. gui Huang, L. Chen, K. Dong, Z. ye Chen, Effect of hot rolling and cooling process on microstructure and properties of 2205/Q235 clad plate, J. Iron Steel Res. Int. 25 (2018) 1113–1122. https://doi.org/10.1007/s42243-018-0172-6. [CrossRef] [Google Scholar]
  6. B. Varbai, T. Pickle, K. Májlinger, Effect of heat input and role of nitrogen on the phase evolution of 2205 duplex stainless steel weldment, Int. J. Press. Vessel. Pip. 176 (2019) 103952. https://doi.org/10.1016/J.IJPVP.2019.103952. [CrossRef] [Google Scholar]
  7. J. Yao, D.D. Macdonald, C. Dong, Passive film on 2205 duplex stainless steel studied by photo-electrochemistry and ARXPS methods, Corros. Sci. 146 (2019) 221–232. https://doi.org/10.1016/J.CORSCI.2018.10.020. [CrossRef] [Google Scholar]
  8. W. Shen, F. Wang, Z. Yang, C. Li, P. Lin, X. Zhu, Investigation of the Crack Initiation and Propagation in Super Duplex Stainless Steel During Hot Working, in: Miner. Met. Mater. Ser., Springer, 2020: pp. 157–167. https://doi.org/10.1007/978-3-030-36540-0_15. [Google Scholar]
  9. S.R. Oke, O.O. Ige, O.E. Falodun, B.A. Obadele, M.B. Shongwe, P.A. Olubambi, Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite, J. Mater. Res. Technol. 7 (2018) 126–134. https://doi.org/10.1016/J.JMRT.2017.03.004. [CrossRef] [Google Scholar]
  10. F.L. Dias, G. Cardeal Stumpf, S.S. Ferreira de Dafé, D.B. Santos, Homogenisation effect on mechanical and pitting behaviour of 2205 Duplex Stainless Steel, Mater. Sci. Technol. (United Kingdom). 36 (2020) 1796–1804. https://doi.org/10.1080/02670836.2020.1836738. [Google Scholar]
  11. Y. Song, S. Wang, G. Zhao, Y. Li, L. Juan, Z. Jian, Hot deformation behavior and microstructural evolution of 2205 duplex stainless steel, Mater. Res. Express. 7 (2020) 46510. https://doi.org/10.1088/2053-1591/ab8529. [Google Scholar]
  12. H.K. Zhang, H. Xiao, X.W. Fang, Q. Zhang, R.E. Logé, K. Huang, A critical assessment of experimental investigation of dynamic recrystallization of metallic materials, Mater. Des. 193 (2020) 108873. https://doi.org/10.1016/J.MATDES.2020.108873. [Google Scholar]
  13. H. Pan, Y. He, X. Zhang, Interactions between dislocations and boundaries during deformation, Materials (Basel). 14 (2021) 1–48. https://doi.org/10.3390/ma14041012. [Google Scholar]
  14. G. Varela-Castro, J.M. Cabrera, J.M. Prado, Critical strain for dynamic recrystallisation. The particular case of steels, Metals (Basel). 10 (2020) 135. https://doi.org/10.3390/met10010135. [CrossRef] [Google Scholar]
  15. Y. Li, Y. Zhang, Z. Chen, Z. Ji, H. Zhu, C. Sun, W. Dong, X. Li, Y. Sun, S. Yao, Hot deformation behavior and dynamic recrystallization of GH690 nickel-based superalloy, J. Alloys Compd. 847 (2020). https://doi.org/10.1016/j.jallcom.2020.156507. [Google Scholar]
  16. K.K. Alaneme, E.A. Okotete, Recrystallization mechanisms and microstructure development in emerging metallic materials: A review, J. Sci. Adv. Mater. Devices. 4 (2019) 19–33. https://doi.org/10.1016/J.JSAMD.2018.12.007. [CrossRef] [Google Scholar]
  17. K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des. 111 (2016) 548–574. https://doi.org/10.1016/j.matdes.2016.09.012. [Google Scholar]
  18. Y.-Q. Zhang, G.-Z. Quan, J. Zhao, W. Xiong, Influencing Mechanisms of Prior Cold Deformation on Mixed Grain Boundary Network in the Thermal Deformation of Ni80A Superalloy, Materials (Basel). 15 (2022) 6426. https://doi.org/10.3390/ma15186426. [CrossRef] [Google Scholar]
  19. J. Han, S.L. Thomas, D.J. Srolovitz, Grain-boundary kinetics: A unified approach, Prog. Mater. Sci. 98 (2018) 386–476. https://doi.org/10.1016/j.pmatsci.2018.05.004. [CrossRef] [Google Scholar]
  20. V. Mazánová, M. Heczko, J. Polák, On the mechanism of fatigue crack initiation in high-angle grain boundaries, Int. J. Fatigue. 158 (2022) 1–7. https://doi.org/10.1016/j.ijfatigue.2022.106721. [Google Scholar]
  21. S. Ratanaphan, D.L. Olmsted, V. V. Bulatov, E.A. Holm, A.D. Rollett, G.S. Rohrer, Grain boundary energies in body-centered cubic metals, Acta Mater. 88 (2015) 346–354. https://doi.org/10.1016/j.actamat.2015.01.069. [CrossRef] [Google Scholar]
  22. M. Liu, W. Gong, R. Zheng, J. Li, Z. Zhang, S. Gao, C. Ma, N. Tsuji, Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered or recrystallized nanostructures, Acta Mater. 226 (2022) 117629. https://doi.org/10.1016/j.actamat.2022.117629. [CrossRef] [Google Scholar]
  23. J. Hu, Z. Zhuang, F. Liu, X. Liu, Z. Liu, Investigation of grain boundary and orientation effects in polycrystalline metals by a dislocation-based crystal plasticity model, Comput. Mater. Sci. 159 (2019) 86–94. https://doi.org/10.1016/j.commatsci.2018.12.010. [CrossRef] [Google Scholar]
  24. M. Irani, M. Joun, Determination of JMAK dynamic recrystallization parameters through FEM optimization techniques, Comput. Mater. Sci. 142 (2018) 178–184. https://doi.org/10.1016/j.commatsci.2017.10.007. [CrossRef] [Google Scholar]
  25. S. Mandal, V. Rakesh, P. V. Sivaprasad, S. Venugopal, K. V. Kasiviswanathan, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel, Mater. Sci. Eng. A. 500 (2009) 114–121. https://doi.org/10.1016/j.msea.2008.09.019. [CrossRef] [Google Scholar]
  26. R. Subbiah, V. Vinod Kumar, G. Lakshmi Prasanna, Wear analysis of treated Duplex Stainless Steel material by carburizing process - A review, Mater. Today Proc. 26 (2019) 2946–2952. https://doi.org/10.1016/j.matpr.2020.02.608. [Google Scholar]
  27. A.M. Gatey, S.S. Hosmani, C.A. Figueroa, S.B. Arya, R.P. Singh, Role of surface mechanical attrition treatment and chemical etching on plasma nitriding behavior of AISI 304L steel, Surf. Coatings Technol. 304 (2016) 413–424. https://doi.org/10.1016/J.SURFCOAT.2016.07.020. [CrossRef] [Google Scholar]
  28. J.C. Dalton, F. Ernst, A.H. Heuer, Low-Temperature Nitridation of 2205 Duplex Stainless Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 51 (2020) 608–617. https://doi.org/10.1007/s11661-019-05553-x. [CrossRef] [Google Scholar]
  29. N. Dai, J. Wu, L.C. Zhang, L. Yin, Y. Yang, Y. Jiang, J. Li, Pitting and etching behaviors occurring in duplex stainless steel 2205 in the presence of alternating voltage interference, Constr. Build. Mater. 202 (2019) 877–890. https://doi.org/10.1016/j.conbuildmat.2019.01.084. [CrossRef] [Google Scholar]
  30. N. Haghdadi, C. Ledermueller, H. Chen, Z. Chen, Q. Liu, X. Li, G. Rohrer, X. Liao, S. Ringer, S. Primig, Evolution of microstructure and mechanical properties in 2205 duplex stainless steels during additive manufacturing and heat treatment, Mater. Sci. Eng. A. 835 (2022) 142695. https://doi.org/10.1016/j.msea.2022.142695. [CrossRef] [Google Scholar]
  31. Y. Meng, S. Sugiyama, J. Yanagimoto, Effects of heat treatment on microstructure and mechanical properties of Cr-V-Mo steel processed by recrystallization and partial melting method, J. Mater. Process. Technol. 214 (2014) 87–96. https://doi.org/10.1016/j.jmatprotec.2013.08.001. [CrossRef] [Google Scholar]
  32. J.Y. Choi, K.T. Park, Secondary Austenite Formation During Aging of Hot-Rolled Plate of a TRIP-Aided Mo-Free Lean Duplex Stainless Steel, Met. Mater. Int. 27 (2021) 3105–3114. https://doi.org/10.1007/s12540-020-00689-7. [CrossRef] [Google Scholar]
  33. M.B. Mampuya, M.C. Umba, K. Mutombo, P.A. Olubambi, Effect of heat treatment on the microstructure of duplex stainless steel 2205, Mater. Today Proc. 38 (2021) 1107–1112. https://doi.org/10.1016/j.matpr.2020.06.196. [CrossRef] [Google Scholar]
  34. R. Ferraresi, A. Avanzini, S. Cecchel, C. Petrogalli, G. Cornacchia, Microstructural, Mechanical, and Tribological Evolution under Different Heat Treatment Conditions of Inconel 625 Alloy Fabricated by Selective Laser Melting, Adv. Eng. Mater. 24 (2022). https://doi.org/10.1002/adem.202100966. [CrossRef] [Google Scholar]
  35. M. Breda, K. Brunelli, F. Grazzi, A. Scherillo, I. Calliari, Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46 (2015) 577–586. https://doi.org/10.1007/s11661-014-2646-x. [CrossRef] [Google Scholar]
  36. M. Zhao, L. Huang, C. Li, J. Li, P. Li, Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel, Mater. Sci. Eng. A. 810 (2021) 141031. https://doi.org/10.1016/j.msea.2021.141031. [CrossRef] [Google Scholar]
  37. B. Liao, L. Cao, X. Wu, Y. Zou, G. Huang, P.A. Rometsch, M.J. Couper, Q. Liu, Effect of heat treatment condition on the flow behavior and recrystallization mechanisms of aluminum alloy 7055, Materials (Basel). 12 (2019). https://doi.org/10.3390/ma12020311. [Google Scholar]
  38. Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, K.C. Zhou, Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression, J. Alloys Compd. 795 (2019) 471–482. https://doi.org/10.1016/j.jallcom.2019.04.319. [CrossRef] [Google Scholar]
  39. M. Mohammadi, H.R. Ashtiani, Influence of heat treatment on the aa6061 and aa6063 aluminum alloys behavior at elevated deformation temperature, Iran. J. Mater. Sci. Eng. 18 (2021) 1–17. https://doi.org/10.22068/ijmse.1890. [Google Scholar]
  40. H.-B. Li, M.-S. Chen, Y.-Q. Tian, L.-S. Chen, Li, -Qing Chen, Ultra-fine-Grained Ferrite Prepared from Dynamic Reversal Austenite During Warm Deformation, 33 (2020) 290–298. https://doi.org/10.1007/s40195-019-00973-5. [Google Scholar]
  41. Z. Li, H. Xie, F. Jia, Y. Lu, X. Yuan, S. Jiao, Z. Jiang, Study on deformation characteristics and microstructure evolution of 2205/ah36 bimetal composite in a novel hot forming process, Metals (Basel). 10 (2020) 1–17. https://doi.org/10.3390/met10101375. [Google Scholar]
  42. E.I. Poliak, J.J. Jonas, Critical strain for dynamic recrystallization in variable strain rate hot deformation, ISIJ Int. 43 (2003) 692–700. https://doi.org/10.2355/isijinternational.43.692. [CrossRef] [Google Scholar]
  43. R. Alturk, S. Mates, Z. Xu, F. Abu-Farha, Effects of microstructure on the strain rate sensitivity of advanced steels, Miner. Met. Mater. Ser. Part F6 (2017) 243–254. https://doi.org/10.1007/978-3-319-51493-2_24. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.