Open Access
Issue
MATEC Web Conf.
Volume 372, 2022
International Conference on Science and Technology 2022 “Advancing Science and Technology Innovation on Post Pandemic Through Society 5.0” (ICST-2022)
Article Number 06006
Number of page(s) 7
Section Engineering and Product Design
DOI https://doi.org/10.1051/matecconf/202237206006
Published online 08 December 2022
  1. Tuyen, V. P., Sengthong, B., Quang, V. X., Do, P. V., Tuyen, H. V., Hung, L. X., Thanh, N. T., Nogami, M., Hayakawa, T. and Huy, B. T.: Dy3+ ions as optical probes for studying the structure of boro-tellurite glasses. Journal of Luminescence 178, 27–33 (2016). [CrossRef] [Google Scholar]
  2. Elkhoshkhany, N., Marzuok, S. Y., Moataz, N. and Kandil, S. H.: Structural and optical properties of TeO2-Li2O-ZnO-Nb2O5-Er2O3 glass system. Journal of Non-Crystalline Solids 08, 011 (2018). [Google Scholar]
  3. Aromi, G. and Roubeaou, O.: Handbook on the Physics and Chemistry of Rare Earths: Chapter 309 – Lanthanide molecules for spin-based quantum technologies 56 1–54. Elsevier (2019). [Google Scholar]
  4. Mohanty, D.K. and Rai, V.K.: Visible Upconverter Based on Eu –Yb Codoped TeO – ZnO Glass. Journal of Display Technology 9(7), 515–519 (2013). [CrossRef] [Google Scholar]
  5. Stanworth, J.E.: Tellurite Glasses. Nature 169, 581 (1952) [CrossRef] [Google Scholar]
  6. Kilic, G., Issever, U.G., and Ilik, E.: Characterization of Er3+ doped ZnTeTasemiconducting oxide glass. Journal of Materials Science: Materials in Electronics 30, 8920–8930 (2019). [CrossRef] [Google Scholar]
  7. Jauhariyah, M.N.R., Cari and Marzuki, A.:Optical Properties of Erbium Doped Tellurite Glasses. Materials Science Forum 864, 37–41 (2016). [CrossRef] [Google Scholar]
  8. Jauhariyah, M.N.R., Setyarsih, W., Yantidewi, M., Marzuki, A. and Cari: Refractive Index Measurement of Tellurite Glasses by Using Brewster Angle Method. 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), pp. 71-74. IEEE (2016). [Google Scholar]
  9. Marzuki, A., Zikri, R.A., Jauhariyah, M.N.R. and Fausta, D.E.: Effect of Na2O/PbO substitution on physical and optical properties of Er3+ -doped tellurite glasses. Journal of Physics: Conference Series 1912(1), 012038 (2021). [CrossRef] [Google Scholar]
  10. Nandi, P. and Jose G.: Erbium-doped phosphotellurite glasses for 1.5 μm optical amplifiers. Optics Communications 265(2), 588–593 (2006). [CrossRef] [Google Scholar]
  11. Mackenzie, J. I., Murugan, G. S., Suzuki, T., Ohishi, Y., Yu, A. W. and Abshire, J. B.: Investigation of Erbium-doped Tellurite Glasses for a Planar Waveguide Power Amplifier at 1.57μm. CLEO: Applications and Technology pp. ATu2 G.7 (2012). [Google Scholar]
  12. Jauhariyah, M.N.R., Anggaryani, M., and Marzuki, A.: Research trend on erbium-doped tellurite glasses based on Scopus database. E3S Web of Conferences 328, 04018 (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  13. Reben, M., Yousef, E.S., Piasecki, M.,Albassam, A. A., El-Naggar, A. M., Lakshminarayana, G., Kityk, I. V., Grelowska,I.: Different modifier oxides effect on the photoluminescence and photoinduced piezo optics of Er3+-doped fluorotellurite glasses. Journal of Material Science: Material Electron 28, 8969–8975 (2017). [CrossRef] [Google Scholar]
  14. Nazrin, S. N., Halimah, M. K., Muhammad, F. D.: Comparison study of optical properties on erbium-doped and silver-doped zinc tellurite glass system for non-linear application. Journal of Materials Science: Materials in Electronics 30, 6378–6389 (2019). [CrossRef] [Google Scholar]
  15. Chen, H. and Ho, Y. S.: Highly cited articles in biomass research: A bibliometric analysis. Renewable and Sustainable Energy Reviews 49, 12–20 (2015). [CrossRef] [Google Scholar]
  16. Chou, W. T. and Ho, Y.S.: Bibliometric analysis of tsunami research. Scientometrics. 73, 3–17 (2007). [CrossRef] [Google Scholar]
  17. Yang, L., Sun, T. and Liu, Y.: A Bibliometric Investigation of Flipped Classroom Research during 2000–2015. International Journal of Emerging Technologies in Learning 12(6), 178186 (2017). [CrossRef] [Google Scholar]
  18. Chuang, K. Y., Huang, Y. L. and Ho, Y. S.: A bibliometric and citation analysis of strokerelated research in Taiwan. Scientometrics 72, 201–212 (2007). [CrossRef] [Google Scholar]
  19. Dong, B., Xu, G., Luo, X., Cai, Y. and Gao W.: A bibliometric analysis of solar power research from 1991 to 2010. Scientometrics 93, 1101–1117 (2012). [CrossRef] [Google Scholar]
  20. Mishra, M., Sudarsan, D., Santos, C.A.G., Mishra, S.K., Pattnaik, N.: An overview of research on natural resources and indigenous communities: a bibliometric analysis based on Scopus database (1979–2020). Environmental Monitoring and Assessment, 193(59), 1–17 (2021). [CrossRef] [Google Scholar]
  21. Gupta, B.M., Mamdapusr, G.M., Gupta, S., Rohilla, L., and Dayal, D.: Global Mucormycosis Research: A Bibliometric Assessment Based on Scopus Database (19982021). Journal of Young Pharmacists 13(4), 356–362 (2021). [CrossRef] [Google Scholar]
  22. Ilhami, M.A., Subagyo, and Masruroh, N.A.: Bibliometric analysis of the term “Three- Dimensional Concurrent Engineering.” IOP Conference Series: Materials Science and Engineering 673(1), (2019). [Google Scholar]
  23. Hamidah, I., Sriyono, S., and Hudha, M.N.: A Bibliometric Analysis of Covid-19 Research using VOSviewer. Indonesian Journal of Science & Technology 5(2), 209–216 (2020). [CrossRef] [Google Scholar]
  24. Prahani, B.K., Rizki, I.A., Jatmiko, B., Suprapto, N., and Amelia, T.: Artificial Intelligence in Education Research During the Last Ten Years: A Review and Bibliometric Study. iJET 17 (08), 169–188 (2022). [Google Scholar]
  25. Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F. and Zeng H. J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 10(2), 166 (2018). [CrossRef] [Google Scholar]
  26. Jha, A., Richards, B., Jose, G., Teddy-Fernandez, T., Joshi, P., Jiang, X., Lousteaud, J.: Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Progress in Materials Science 57, 1426–1491 (2012). [CrossRef] [Google Scholar]
  27. Babu, P., Seo, H.J., Kesavulu, C.R., Jang, K.H.,Jayasankar, C.K.: Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses. Journal of Luminescence 129, 444–448 (2009). [CrossRef] [Google Scholar]
  28. Marjanovic, S., Toulouse, J., Jain, H., Sandmanna, C., Dierolfa, V., Kortan, A.R., Kopylov, N., Ahrens, R.G.: Characterization of new erbium-doped tellurite glasses and fibres. Journal of Non-Crystalline Solids 322, 311–318 (2003). [CrossRef] [Google Scholar]
  29. Mori, A.: Tellurite-based fibres and their applications to optical communication networks. Journal of the Ceramic Society of Japan 116(1358), 1040 – 1051 (2008). [CrossRef] [Google Scholar]
  30. Mori, A., Sakamoto, T., Kobayashi, K., Shikano, K., Oikawa, K., Oikawa, K., Hoshino, K., Kanamori, T., Ohishi, Y., Shimizu, M.: 1.58- m Broad-Band Erbium-Doped Tellurite Fiber Amplifier. Journal of Lightwave Technology 20(5), 822–827 (2002). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.