Open Access
MATEC Web Conf.
Volume 372, 2022
International Conference on Science and Technology 2022 “Advancing Science and Technology Innovation on Post Pandemic Through Society 5.0” (ICST-2022)
Article Number 05005
Number of page(s) 7
Section Energy and Environmental Science
Published online 08 December 2022
  1. A. I. M’Hamdi, N. I. Kandri, A. Zerouale, D. Blumberga, and J. Gusca, “Life cycle assessment of paper production from treated wood,” Energy Procedia, vol. 128, pp. 461–468, (2017), doi:10.1016/j.egypro.2017.09.031 [CrossRef] [Google Scholar]
  2. N. Fuchshofen, J. Klement, and W. Terlau, “Opportunities and Limits In The Application Of The Life Cycle Assessment (LCA) Method Adopted To Pulp Demanded By the German Paper Production Industry,” Proc. Food Syst. Dyn., vol. 0, no. 0, pp. 113–118, (2018). [Google Scholar]
  3. Mandeep, G. K. Gupta, H. Liu, and P. Shukla, “Pulp and paper industry–based pollutants, their health hazards and environmental risks,” Curr. Opin. Environ. Sci. Heal., vol. 12, pp. 48–56, (2019), doi:10.1016/j.coesh.2019.09.010 [CrossRef] [Google Scholar]
  4. Q. Zhang, M. U. Khan, X. Lin, W. Yi, and H. Lei, “Green-composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes,” J. Clean. Prod., vol. 262, pp. 1–20, (2020), doi:10.1016/j.jclepro.2020.121251 [Google Scholar]
  5. B. Bahrami and P. Jafari, “Paper recycling, directions to sustainable landscape,” Int. J. Environ. Sci. Technol., vol. 17, no. 1, pp. 371–382, (2020), doi:10.1007/s13762-019-02354-y [CrossRef] [Google Scholar]
  6. A. R. G. de Azevedo, J. Alexandre, M. T. Marvila, G. de C. Xavier, S. N. Monteiro, and L. G. Pedroti, “Technological and environmental comparative of the processing of primary sludge waste from paper industry for mortar,” J. Clean. Prod., vol. 249, no. xxxx, p. 119336, (2020), doi:10.1016/j.jclepro.2019.119336 [CrossRef] [Google Scholar]
  7. M. Moosavi, P. Ghorbannezhad, M. Azizi, and H. Zarea Hosseinabadi, “Evaluation of life cycle assessment in a paper manufacture by analytical hierarchy process,” International Journal of Sustainable Engineering, vol. 14, no. 6. Pp.1647–1657, (2021), doi:10.1080/19397038.2021.1982065 [CrossRef] [Google Scholar]
  8. H. N. Bui et al., “Life cycle assessment of paper mill wastewater: a case study in Viet Nam,” Water Sci. Technol., vol. 85, no. 5, pp. 1522–1537, (2022), doi:10.2166/wst.2022.049 [Google Scholar]
  9. E.-M. Ekstrand, Anaerob behandling inom pappers- och massaindustri : Utmaningar och möjligheter för implementering vid sulfabruk., no. 769. (2019). [Google Scholar]
  10. F. Ishartomo, I. Nugraha, and A. I. Sholichah, “Learning from plastic waste village in Boyolali Indonesia : SME-based plastic recycling industries Learning from Plastic Waste Village in Boyolali Indonesia : SME-based Plastic Recycling Industries,” vol. 030083, no. April, (2020). [Google Scholar]
  11. G. Yang et al., “Recycling sustainability of waste paper industry in Beijing City: An analysis based on value chain and GIS model,” Waste Manag., vol. 106, pp. 62–70, (2020), doi:10.1016/j.wasman.2020.03.013 [Google Scholar]
  12. D. Seprianto, M. Yunus, A. Zamheri, D. Endra, M. Yusuf, and A. B. Y.H, “Analisis Pemanfaatan Limbah Kertas dan Kardus Untuk Penyerapan Sisa Fluida Cair Pada Industri (Studi Kasus di PT. XYZ),” J. Austenit, vol. 10, no. 2, pp. 1–8, (2018). [Google Scholar]
  13. M. Sun, Y. Wang, L. Shi, and J. J. Klemeš, “Uncovering energy use, carbon emissions and environmental burdens of pulp and paper industry: A systematic review and metaanalysis,” Renew. Sustain. Energy Rev., vol. 92, no. April, pp. 823–833, 2018, doi:10.1016/j.rser.(2018).04.036 [Google Scholar]
  14. X. Ma, X. Shen, C. Qi, L. Ye, D. Yang, and J. Hong, “Energy and carbon coupled water footprint analysis for Kraft wood pulp paper production,” Renew. Sustain. Energy Rev., vol. 96, no. July, pp. 253–261, (2018), doi:10.1016/j.rser.2018.07.054 [Google Scholar]
  15. Q. Zhao, S. Ding, Z. Wen, and A. Toppinen, “Energy flows and carbon footprint in theforestry-pulp and paper industry,” Forests, vol. 10, no. 9, (2019), doi:10.3390/f10090725 [Google Scholar]
  16. J. C. Chang, R. H. Beach, and E. A. Olivetti, “Consequential effects of increased use of recycled fiber in the United States pulp and paper industry,” J. Clean. Prod., vol. 241, p. 118133, (2019), doi:10.1016/j.jclepro.2019.118133. [CrossRef] [Google Scholar]
  17. C. Buccino, C. Ferrara, C. Malvano, and G. De Feo, “LCA of an ice cream cup of polyethylene coated paper: how does the choice of the end-oflife affect the results?,” Environ. Technol. (United Kingdom), vol. 40, no. 5, pp. 584–593, (2019), doi:10.1080/09593330.2017.1397771. [CrossRef] [Google Scholar]
  18. Y. Man, J. Li, M. Hong, and Y. Han, “Energy transition for the low-carbon pulp and paper industry in China,” Renew. Sustain. Energy Rev., vol. 131, no. May, p. 109998, (2020), doi:10.1016/j.rser.2020.109998. [Google Scholar]
  19. M. Liu et al., “Waste paper recycling decision system based on material flow analysis and life cycle assessment: A case study of waste paperrecycling from China,” J. Environ. Manage., vol. 255, no. July 2019, p. 109859, (2020), doi:10.1016/j.jenvman.2019.109859. [CrossRef] [Google Scholar]
  20. N. Rinsatitnon, W. Dijaroen, T. Limpiwun, G. Suktavee, and T. Chinda, “Reverse logistics implementation in the construction industry:Paper waste focus,” Songklanakarin J. Sci. Technol., vol. 40, no. 4, pp. 798–805, (2018), doi:10.14456/sjst-psu.2018.113. [Google Scholar]
  21. M. Starostka-patyk, Monograph Marta Starostka-Patyk, no. March. (2017) [Google Scholar]
  22. S. Lestari and D. D. Nurdiansah, “Analisa Perencanaan Kebutuhan Material pada Perusahaan Manufaktur Kertas dengan Metode Material Requirement Planning (MRP),” J. INTECH Tek. Ind. Univ. Serang Raya, vol. 4, no. 2, p. 59, (2018), doi:10.30656/intech.v4i2.956. [Google Scholar]
  23. A. Munandar, V. Avri, and S. Hasiany, “Daur Ulang Air Buangan Menjadi Air Baku Dengan Sistem Filtrasi Di PT P (Industri Kertas),” Media Ilm. Tek. Lingkung., vol. 5, no. 2, pp. 71–75, (2020), doi:10.33084/mitl.v5i2.1395. [Google Scholar]
  24. J. Liang et al., “Performance and microbial communities of a novel integrated industrialscale pulp and paper wastewater treatment plant,” J. Clean. Prod., vol. 278, p. 123896, (2021), doi:10.1016/j.jclepro.2020.123896. [CrossRef] [Google Scholar]
  25. I. N. Pujawan, Supply Chain Management Edisi 3. Yogyakarta: Penerbit Andi, (2017). [Google Scholar]
  26. B. Mathur, S. Gupta, M. L. Meena, and G. S. Dangayach, “Healthcare supply chain management: literature review and some issues,” J. Adv. Manag. Res., vol. 15, no. 3, pp. 265–287, (2018), doi:10.1108/JAMR-09-2017-0090. [CrossRef] [Google Scholar]
  27. I. Nugraha, M. Hisjam, and W. Sutopo, “Sustainable Criteria in Supplier Evaluation of the Food Industry,” in IOP Conference Series: Materials Science and Engineering, (2019), vol. 598, no. 1, p. 12006. [Google Scholar]
  28. A. Muhammad Yusuf, D. Soediantono, and S. Staf Dan Komando Angkatan Laut, “Supply Chain Management and Recommendations for Implementation in the Defense Industry: A Literature Review,” Int. J. Soc. Manag. Stud., vol. 3, no. 3, pp. 63–77, (2022). [Google Scholar]
  29. I. Nugraha, M. Hisjam, and W. Sutopo, “Aggregate Planning Method as Production Quantity Planning and Control to Minimizing Cost,” in IOP Conference Series: Materials Science and Engineering, (2020), vol. 943, no. 1, p. 12045. [Google Scholar]
  30. F. Pulansari, I. Nugraha, and S. Dewi, “Determining the Shortest Route of Distributionto Reduce Environmental Emissions Using Saving Matrix and Nearest Neighbor Methods,” Nusant. Sci. Technol. Proc., pp. 218–225, (2021). [Google Scholar]
  31. M. Forkan, M. M. Rizvi, and M. A. M. Chowdhury, “Multiobjective reverse logistics model for inventory management with environmental impacts: An application in industry,” Intell. Syst. with Appl., vol. 14, p. 200078, (2022), doi:10.1016/j.iswa.2022.200078 [Google Scholar]
  32. I. Kubasakova and J. Kubanova, “The comparison of implementation items of reverse logistics in terms of chosen companies in europe and Slovakia,” Transp. Res. Procedia, vol. 53, no. (2019), pp. 167–173, 2021, doi:10.1016/j.trpro.2021.02.022. [Google Scholar]
  33. P. A. B. Lima, F. C. M. Delgado, T. L. dos Santos, and A. P. Florentino, “Medications reverse logistics: A systematic literature review and a method for improving the Brazilian case,” Clean. Logist. Supply Chain, vol. 3, no. December, p. 100024, (2022), doi:10.1016/j.clscn.2021.100024. [CrossRef] [Google Scholar]
  34. D. A. L. Silva, A. L. Raymundo Pavan, J. Augusto De Oliveira, and A. R. Ometto, “Life cycle ssessment of offset paper production in Brazil: Hotspots and cleaner production alternatives,” J. Clean. Prod., vol. 93, pp. 222–233, (2015), doi:10.1016/j.jclepro.2015.01.030. [CrossRef] [Google Scholar]
  35. A. Akbar and A. A. B. Mokhtar, “Integrating Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) Model for Selection of Centralized Chilled Water Generation – Review Paper,” MATEC Web Conf., vol. 131, (2017), doi:10.1051/matecconf/201713104006. [Google Scholar]
  36. M. Cellura, M. A. Cusenza, and S. Longo, “Energy-related GHG emissions balances: IPCC versus LCA,” Sci. Total Environ., vol. 628–629, pp. 1328–1339, (2018), doi:10.1016/j.scitotenv.2018.02.145. [Google Scholar]
  37. V. W. Y. Tam, K. Kim, and A. Brohier, “Lifecycle analysis by using the alternative sustainable water innovations in residential dwellings,” Int. J. Constr. Manag., vol. 21, no. 11, pp. 1143–1155, (2021), doi:10.1080/15623599.2019.1603564. [Google Scholar]
  38. K. N. Le, C. N. N. Tran, and V. W. Y. Tam, “Life-cycle greenhouse-gas emissions assessment: An Australian commercial building perspective,” J. Clean. Prod., vol. 199, pp. 236–247, (2018), doi:10.1016/j.jclepro.2018.07.172. [CrossRef] [Google Scholar]
  39. M. Brunnhofer, N. Gabriella, J. P. Schöggl, T. Stern, and A. Posch, “The biorefinery transition in the European pulp and paper industry – A three-phase Delphi study including a SWOTAHP analysis,” For. Policy Econ., vol. 110, no. August 2018, p. 101882, (2020), doi:10.1016/j.forpol.2019.02.006. [CrossRef] [Google Scholar]
  40. C. Hohenthal et al., “The ISO 14067 approach to open-loop recycling of paper products: Making it operational,” J. Clean. Prod., vol. 224, pp. 264–274, (2019), doi:10.1016/j.jclepro.2019.03.179 [CrossRef] [Google Scholar]
  41. A. Nabinger, K. Tomberlin, R. Venditti, and Y. Yao, “Using a data-driven approach to unveil greenhouse gas emission intensities of different pulp and paper products,” Procedia CIRP, vol. 80, pp. 689–692, (2019), doi:10.1016/j.procir.2018.12.001. [Google Scholar]
  42. D. Rovelli, C. Brondi, M. Andreotti, E. Abbate, M. Zanforlin, and A. Ballarino, “A Modular Tool to Support Data Management for LCA in Industry: Methodology, Application and Potentialities,” Sustain., vol. 14, no. 7, pp. 1–31, (2022), doi:10.3390/su14073746. [Google Scholar]
  43. I. Print, I. Online, R. Aziz, J. Teknik, L. Fakultas, and T. Universitas, “Jurnal Dampak Studi Daur Ulang Sampah Kertas dari Sumber Institusi di Kota Padang,” vol. 2, pp. 77–81, (2018). [Google Scholar]
  44. R. Khairunnissa, Isni Nur; Asthary, Prima Besty; Saepulloh; Mulyani, “Pemanfaatan Air Limbah Wet Scrubber Flue Gas Desulphurization (FGD) Industri Kertas sebagai Medium Pertumbuhan Spirulina platensis,” vol. 8, no. 2, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.