Open Access
Issue
MATEC Web Conf.
Volume 372, 2022
International Conference on Science and Technology 2022 “Advancing Science and Technology Innovation on Post Pandemic Through Society 5.0” (ICST-2022)
Article Number 03005
Number of page(s) 4
Section Chemical and Biotechnology System
DOI https://doi.org/10.1051/matecconf/202237203005
Published online 08 December 2022
  1. I. Utami, S. Redjeki, D.H. Astuti, Sani, Biogas production and removal COD - BOD and TSS from wastewater industrial alcohol (vinasse) by modified UASB bioreactor, MATEC Web Conf. 58 (2016). https://doi.org/10.1051/matecconf/20165801005 [CrossRef] [EDP Sciences] [Google Scholar]
  2. S. Ulku, F. Cakicioglu, Energy recovery in drying applications, Renew. Energy. 1 (1991) 695–698. [CrossRef] [Google Scholar]
  3. R.C. Bansal, M. Goyal, Activated Carbon Adsorption, 2005. https://doi.org/10.1007/BF02276400. [Google Scholar]
  4. S.S.A. Syed-Hassan, M.S.M. Zaini, Optimization of the preparation of activated carbon from palm kernel shell for methane adsorption using Taguchi orthogonal array design, Korean J. Chem. Eng. 33 (2016) 2502– 2512. https://doi.org/10.1007/s11814-016-0072-z. [Google Scholar]
  5. D.C.S. Azevedo, J.C.S. Araújo, M. Bastos-Neto, A.E.B. Torres, E.F. Jaguaribe, C.L. Cavalcante, Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride, Microporous Mesoporous Mater. 100 (2007) 361–364. https://doi.org/10.1016/j.micromeso.2006.11.024. [CrossRef] [Google Scholar]
  6. A. Demirbas, Pyrolysis of ground beech wood in irregular heating rate conditions, J. Anal. Appl. Pyrolysis. 73 (2005) 39–43. https://doi.org/10.1016/j.jaap.2004.04.002. [CrossRef] [Google Scholar]
  7. O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production-A review, Renew. Sustain. Energy Rev. 11 (2007) 1966–2005. https://doi.org/10.1016/j.rser.2006.03.013. [CrossRef] [Google Scholar]
  8. N.A. Kolur, S. Sharifian, T. Kaghazchi, Investigation of sulfuric acid-treated activated carbon properties, Turkish J. Chem. 43 (2019) 663–675. https://doi.org/10.3906/kim-1810-63. [Google Scholar]
  9. N. Asasian, T. Kaghazchi, Comparison of dimethyl disulfide and carbon disulfide in sulfurization of activated carbons for producing mercury adsorbents, Ind. Eng. Chem. Res. 51 (2012) 12046–12057. https://doi.org/10.1021/ie3001474. [CrossRef] [Google Scholar]
  10. M. Tagliabue, D. Farrusseng, S. Valencia, S. Aguado, U. Ravon, C. Rizzo, A. Corma, C. Mirodatos, Natural gas treating by selective adsorption: Material science and chemical engineering interplay, Chem. Eng. J. 155 (2009) 553–566. https://doi.org/10.1016/j.cej.2009.09.010. [CrossRef] [Google Scholar]
  11. G. Jozefaciuk, G. Bowanko, Effect of Acid and Alkali Treatments on Surface-Charge Properties of Selected Minerals, Clays Clay Miner. 50 (2002). http://ccm.geoscienceworld.org/cgi/content/abstract/50/5/647. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.