Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 09009
Number of page(s) 7
Section Computational & Data-driven Modelling
DOI https://doi.org/10.1051/matecconf/202237009009
Published online 01 December 2022
  1. D. Wang, Y. Liang, H. Ning, and B. Wang, “Effects of Zr and Co on the microstructure and mechanical properties of NiAl-based alloys,” Journal of Alloys and Compounds, vol. 883, P.1, 2021. [Google Scholar]
  2. S. K. Bhaumik, M. Sujata, M. A. Venkataswamy, and M. A. Parameswara, “Failure of a low pressure turbine rotor blade of an aeroengine,” Engineering Failure Analysis, vol. 13, no. 8, PP.1202–1219, 2006. [CrossRef] [Google Scholar]
  3. R. Darolia et al., “Overview of NiAl alloys for high temperature structural applications,” in Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour: Springer, 1992, PP.679–698. [Google Scholar]
  4. T. W. B. Riyadi, T. Zhang, D. Marchant, and X. Zhu, “NiAl–TiC–Al2O3 composite formed by self-propagation high-temperature synthesis process: Combustion behaviour, microstructure, and properties,” Journal of Alloys and Compounds, vol. 805, PP.104–112, 2019. [CrossRef] [Google Scholar]
  5. A. Gungor and H. Demirtas, “Microstructure and mechanical properties of Fe-doped NiAl–28Cr–6Mo eutectic alloys,” Transactions of Nonferrous Metals Society of China, vol. 26, no. 4, PP.1025–1031, 2016. [CrossRef] [Google Scholar]
  6. X.-h. Du, C. Gao, B.-l. Wu, Y.-h. Zhao, and J.-j. Wang, “Enhanced compression ductility of stoichiometric NiAl at room temperature by Y and Cu co-addition,” International Journal of Minerals, Metallurgy, and Materials, vol. 19, no. 4, PP.348–353, 2012. [CrossRef] [Google Scholar]
  7. L.-Z. Tang, Z.-G. Zhang, S.-S. Li, and S.-K. Gong, “Mechanical behaviors of NiAl-Cr (Mo)-based near eutectic alloy with Ti, Hf, Nb and W additions,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 2, PP.212–216, 2010. [CrossRef] [Google Scholar]
  8. G. Frommeyer, R. Rablbauer, and H. J. Schäfer, “Elastic properties of B2-ordered NiAl and NiAl–X (Cr, Mo, W) alloys,” Intermetallics, vol. 18, no. 3, PP.299–305, 2010. [CrossRef] [Google Scholar]
  9. W.-c. Xu, K. Huang, S.-f. Wu, Y.-y. Zong, and D.-b. Shan, “Influence of Mo content on microstructure and mechanical properties of β-containing TiAl alloy,” Transactions of Nonferrous Metals Society of China, vol. 27, no. 4, PP.820–828, 2017. [CrossRef] [Google Scholar]
  10. Y. Hamada, Y. Kaneno, and T. Takasugi, “Effect of Si addition on microstructure and mechanical properties of dual two-phase Ni3Al and Ni3 V intermetallic alloys,” MATERIALS TRANSACTIONS, vol. 57, no. 5, PP.631–638, 2016. [CrossRef] [Google Scholar]
  11. C. Ai, S. Li, Y. Liang, and S. Gong, “Influence of Mo and Ta additions on solidification behavior of Ni3Al single crystal alloys,” Progress in Natural Science: Materials International, vol. 25, no. 4, PP.353–360, 2015. [CrossRef] [Google Scholar]
  12. L. Wang et al., “A true change of NiAl-Cr (Mo) eutectic lamellar structure during high temperature treatment,” Journal of Alloys and Compounds, vol. 732, PP.124–128, 2018. [CrossRef] [Google Scholar]
  13. S. M. Joslin, X. F. Chen, B. F. Oliver, and R. D. Noebe, “Fracture behavior of directionally solidified NiAl-Mo and NiAl-V eutectics,” Materials Science and Engineering: A, vol. 196, no. 1–2, PP.9–18, 1995. [CrossRef] [Google Scholar]
  14. J. L. Walter and H. E. Cline, “The effect of solidification rate on structure and high-temperature strength of the eutectic NiAl-Cr,” Metallurgical and Materials Transactions B, vol. 1, no. 5, PP.1221–1229, 1970. [Google Scholar]
  15. L. Y. Sheng, L. Nan, W. Zhang, J. T. Guo, and H. Q. Ye, “Microstructure and mechanical properties determined in compressive tests of quasi-rapidly solidified NiAl-Cr (Mo)-Hf eutectic alloy after hot isostatic pressure and high temperature treatments,” Journal of Materials Engineering and Performance, vol. 19, no. 5, PP.732–736, 2010. [CrossRef] [Google Scholar]
  16. J. T. Guo, C. Y. Cui, Y. X. Chen, D. X. Li, and H. Q. Ye, “Microstructure, interface and mechanical property of the DS NiAl/Cr (Mo, Hf) composite,” Intermetallics, vol. 9, no. 4, PP.287–297, 2001. [CrossRef] [Google Scholar]
  17. D. R. Johnson, X. F. Chen, B. F. Oliver, R. D. Noebe, and J. D. Whittenberger, “Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl (Cr, Mo) eutectic systems,” Intermetallics, vol. 3, no. 2, PP.99–113, 1995. [CrossRef] [Google Scholar]
  18. J. Peng, X. Fang, Z. Qu, and J. Wang, “Isothermal oxidation behavior of NiAl and NiAl-(Cr, Mo) eutectic alloys,” Corrosion Science, vol. 151, PP.27–34, 2019. [CrossRef] [Google Scholar]
  19. J. Zeisig, N. Schädlich, J. Hufenbach, H. Wendrock, J. Kimme, and U. Kühn, “Effect of cooling rate on precipitation behaviour and transformation characteristics of a novel FeCrVBC cast alloy,” Journal of Alloys and Compounds, vol. 816, P.152544, 2020. [CrossRef] [Google Scholar]
  20. R. Jha and G. S. Dulikravich, “Design of high temperature Ti–Al–Cr–V alloys for maximum thermodynamic stability using self-organizing maps,” Metals, vol. 9, no. 5, P.537, 2019. [CrossRef] [Google Scholar]
  21. B. H. Kim et al., “Role of Ca in hot compression behavior and microstructural stability of AlMg5 alloy during homogenization,” Transactions of Nonferrous Metals Society of China, vol. 30, no. 3, PP.571–581, 2020. [CrossRef] [Google Scholar]
  22. N. T. H. Oanh and N. H. Viet, “Precipitation of M23C6 secondary carbide particles in Fe-Cr-Mn-C alloy during heat treatment process,” Metals, vol. 10, no. 2, P.157, 2020. [CrossRef] [Google Scholar]
  23. N. F. Mott and F. R. N. Nabarro, “An attempt to estimate the degree of precipitation hardening, with a simple model,” Proceedings of the Physical Society (1926–1948), vol. 52, no. 1, p. 86, 1940. [CrossRef] [Google Scholar]
  24. Y. Li, K. Yu, X. Song, and F. Zhang, “Effect of Zr addition on microstructures and mechanical properties of Ni-46Ti-4Al alloy,” Rare Metals, vol. 30, no. 5, PP.522–526, 2011. [CrossRef] [Google Scholar]
  25. B.-H. Choe et al., “The enhancement of tensile strength and elongation in two phase (NiAl+ Ni3Al) intermetallics of Zr-doped Ni–20Al–27.5 Fe (at.%) alloys,” Materials Science and Engineering: A, vol. 323, no. 1–2, PP.187–191, 2002. [CrossRef] [Google Scholar]
  26. J. D. Whittenberger and R. D. Noebe, “Elevated temperature compressive properties of Zr-modified NiAl,” Metallurgical and Materials Transactions A, vol. 27, no. 9, PP.2628–2641, 1996. [CrossRef] [Google Scholar]
  27. I. N. Ganiev, S. E. Otajonov, N. F. Ibrohimov, and M. Mahmudov, “Temperature dependence of the heat capacity and change in the thermodynamic functions of strontium-alloyed AK1 M2 alloy,” Modern Electronic Materials, vol. 4, P.119, 2018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.