Open Access
Issue |
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 18 | |
Section | Pattern Recognition | |
DOI | https://doi.org/10.1051/matecconf/202237007009 | |
Published online | 01 December 2022 |
- J.J. Aguilar, F. Torres, M.A. Lope, Stereo vision for 3D measurement: accuracy analysis, calibration and industrial applications, Measurement, 18, 193–200 (1996) [CrossRef] [Google Scholar]
- H. Suenaga, H.H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, T. Takato, Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study, BMC Medical Imaging, 15 (2015) [Google Scholar]
- M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, in Communications of the ACM, 24, 381–395 (1981) [CrossRef] [Google Scholar]
- K.J. Doherty, D.P. Baxter, E. Schneeweiss, J.J. Leonard, Probabilistic Data Association via Mixture Models for Robust Semantic SLAM, ICRA (2020) [Google Scholar]
- S.L. Bowman, N. Atanasov, K. Daniilidis, G.J. Pappas, Probabilistic Data Association for Semantic SLAM, ICRA (2017) [Google Scholar]
- S.H.K. Tareen, Z. Saleem, A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK, iCoMET, 1–10 (2018) [Google Scholar]
- D.G. Lowe, Distinctive image features from scale-invariant keypoints, IJCV, 60, 91–110 (2004) [CrossRef] [Google Scholar]
- E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: An efficient alternative to SIFT or SURF, IJCV, 2564–2571 (2011) [Google Scholar]
- M. Muja, D.G. Lowe, Fast approximate nearest neighbours with automatic algorithm configuration, VISAPP, 1, 331–340 (2009) [Google Scholar]
- C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, Z. Xie, Deep Learning and Its Applications in Biomedicine, Genomics, Proteomics & Bioinformatics, 16, 17–32 (2018) [CrossRef] [Google Scholar]
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, MobileNetV2: Inverted Residuals and Linear Bottlenecks (2018) [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, ICCVPR, 770–778 (2016) [Google Scholar]
- O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, MICCAI, 234–241 (2015) [Google Scholar]
- L. G. Shapiro, G.C. Stockman, Computer Vision (2001) [Google Scholar]
- A. Geiger, P. Lenz, R. Urtasun, Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite, IJCV (2012) [Google Scholar]
- G. Bradski, The OpenCV Library, Dr. Dobbs Journal of Software Tools (2000) [Google Scholar]
- B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, A. Torralba, Semantic understanding of scenes through the ADE20 K dataset, IJCV (2018) [Google Scholar]
- B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, Scene Parsing through ADE20 K Dataset, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, ICCVPR (2017) [Google Scholar]
- CSAILVision, PyTorch Implementation for Semantic Segmentation/Scene Parsing on MIT ADE20 K dataset, Available at: https://github.com/CSAILVision/semantic-segmentation-pytorch (2020) (Accessed: 14 April 2022) [Google Scholar]
- H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing Network, CVPR (2017) [Google Scholar]
- W. Brink, Stereo vision for simultaneous localization and mapping (Stellenbosch University, 2012) [Google Scholar]
- K.G. Derpanis, Overview of the RANSAC Algorithm, (2010) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.