Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 07005
Number of page(s) 14
Section Pattern Recognition
DOI https://doi.org/10.1051/matecconf/202237007005
Published online 01 December 2022
  1. A. Alaa, M. Schaar, PMLR 80, 139–148 (2018) [Google Scholar]
  2. A.M. Alaa, T. Bolton, E. Di Angelantonio, J.H.F. Rudd, and M. van der Schaar, PloS ONE 14 (5), e0213653 (2019) [CrossRef] [Google Scholar]
  3. L. Breiman, Machine Learning 45 (1), 5–32 (2001) [Google Scholar]
  4. R.B. D’Agostino, R.S. Vasan, M.J. Pencina, P.A. Wolf, M. Cobain, J.M. Massaro, W.B. Kannel, Circulation 117 (6), 743–753 (2008) [CrossRef] [Google Scholar]
  5. D.C. Goff, D.M. Lloyd-Jones, G. Bennett, S. Coady, R.B. D’Agostino, R. Gibbons, P. Greenland, D.T. Lackland, D. Levy, C.J. O’Donnell, J.G. Robinson, J.S. Schwarts, S.T. Shero, S.C. Smith, P. Sorlie, N.J. Stone, P.W.F. Wilson, JACC 63 (25 Part B), 2935–2959 (2014) [CrossRef] [Google Scholar]
  6. B.A. Goldstein, A.M. Navar, R.E. Carter, Eur. Heart J. 38 (23), 1805–1814 (2017) [Google Scholar]
  7. D.M. Lloyd-Jones, Circulation, 121 (15) 1768–1777 (2010) [CrossRef] [Google Scholar]
  8. S.F. Weng, J. Reps, J. Kai, J.M. Garibaldi, N. Qureshi, PloS ONE 12 (4), e0174944 (2017) [CrossRef] [Google Scholar]
  9. P.W.F. Wilson, R.B. D’Agostino, D. Levy, A.M. Belanger, H. Silbershatz, W.B. Kannel, Circulation 97 (18), 1837–1847 (1998) [CrossRef] [Google Scholar]
  10. L. Yang, H. Wu, X. Jin, P. Zheng, S. Hu, X. Xu, W. Yu, J. Yan, Scientific Reports 10 (1), 1–8 (2020) [CrossRef] [PubMed] [Google Scholar]
  11. S. Xu, Z. Zhang, D. Wang, J. Hu, X. Duan, T. Zhu, ICBDA, 288–232, IEEE (2017) [Google Scholar]
  12. G.O. Gutiérrez-Esparza, O.I, Vázquez, M Vallejo, J. Hernández-Torruco, Symmetry 12 (4), 581 (2020) [CrossRef] [Google Scholar]
  13. E.K. Choe, H. Rhee, S. lee, E. Shin, S. Oh, J. Lee, S.H. Choi, Genomics Inform. 16 (4), e31 (2018) [CrossRef] [Google Scholar]
  14. C. Yu, Y. Lin, C. Lin, S Wang, S Lin, S.H. Lin, J.L Wu, S Chang, JMIR medical informatics 8 (3), e17110 (2020) [CrossRef] [Google Scholar]
  15. J. Kim, S. Mun, S. Lee, K. Jeong, Y. Baek, BMC Public Health 22 (1), 644 (2022) [CrossRef] [Google Scholar]
  16. World Health Organisation, Cardiovascular diseases (CVDs), who, June 11, 2021. https://www.who.int/news-room/ fact-sheets/detail/cardiovascular-diseases-(cvds) [Google Scholar]
  17. Dileep, Logistic Regression To predict heart disease, kaggle, Accessed May 11, 2021, https://www.kaggle.com/datasets/dileep070/heart-disease-prediction-using-logistic-regression [Google Scholar]
  18. Open Data Project with NHANES 2011–2012 Data, data.world, Accessed February 05, 2022, https://data.world/rhoyt/librehealth-educational-ehr/workspace/file?filename=Merged_Unique_Names_V2.csv [Google Scholar]
  19. Centers for Disease Control and Prevention, National Health and Nutrition Examination Survey, cdc, Accessed May 01, 2022, https://www.cdc.gov/nchs/nhanes/about_nhanes.htm [Google Scholar]
  20. National Heart, Lung, and Blood Institute, Framingham Heart Study (FHS), nhlbi, Accessed May 03, 2022, https://www.nhlbi.nih.gov/science/framingham-heart-study-fhs [Google Scholar]
  21. R.B. D’AgostinoSr, R.S. Vasan, Michael.J. Pencina, P.A. Wolf, M. Cobain, J.M. Massaro, W.B. Kannel, Circulation, 117 (6), 743–753 (2008) [CrossRef] [Google Scholar]
  22. A.M. Alaa, AutoPrognosis: Automated Clinical Prognostic Modelling via Bayesian Optimization, github, December 21, 2019, https://github.com/ahmedmalaa/AutoPrognosis [Google Scholar]
  23. Open Data Project with NHANES 2011–2012 Data, data.world, Accessed February 05, 2022, https://data.world/rhoyt/librehealth-educational-https://data.world/rhoyt/librehealth-educational-ehr/workspace/file?filename=Codebook_NHANES_2011_2012.xlsx [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.