Open Access
Issue |
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
|
|
---|---|---|
Article Number | 06006 | |
Number of page(s) | 9 | |
Section | Process Development | |
DOI | https://doi.org/10.1051/matecconf/202237006006 | |
Published online | 01 December 2022 |
- F. Ahmed et al., “Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17–4 PH stainless steel,” J Mater Process Technol, vol. 278, no. November 2019, p. 116522, 2020, doi:10.1016/j.jmatprotec.2019.116522. [CrossRef] [Google Scholar]
- Z. Hao et al., “Spheroidization of a granulated molybdenum powder by radio frequency inductively coupled plasma,” Int J Refract Metals Hard Mater, vol. 82, no. March, pp. 15–22, 2019, doi:10.1016/j.ijrmhm.2019.03.023. [CrossRef] [Google Scholar]
- L. Tang, J. Fan, H. Kou, B. Tang, and J. Li, “Effect of oxygen variation on high cycle fatigue behavior of Ti-6Al-4 V titanium alloy,” Materials, vol. 13, No. 17, Sep. 2020, doi:10.3390/ma13173858. [Google Scholar]
- B. Xie, Y. Fan, and S. Zhao, “Characterization of Ti6Al4 V powders produced by different methods for selective laser melting,” Mater Res Express, vol. 8, No. 7, Jul. 2021, doi:10.1088/2053-1591/ac10d1. [Google Scholar]
- K. N. Drof Sci and E. I. Student, “Effect Of Oxygen And Nitrogen Contents On The Structure Of The Ti-6al-4 v Alloy Manufactured By Selective Laser Melting.” [Google Scholar]
- J. W. Murray, M. Simonelli, A. Speidel, D. M. Grant, and A. T. Clare, “Spheroidisation of metal powder by pulsed electron beam irradiation,” Powder Technol, vol. 350, pp. 100–106, 2019, doi:10.1016/j.powtec.2019.03.041. [CrossRef] [Google Scholar]
- A. Popovich and V. Sufiiarov, “Metal Powder Additive Manufacturing,” in New Trends in 3D Printing, InTech, 2016. doi:10.5772/63337. [Google Scholar]
- T. Hofstätter, N. Bey, M. Mischkot, A. Lunzer, D. B. Pedersen, and H. Nørgaard, “Comparison of conventional Injection Mould Inserts to Additively Manufactured Inserts using Life Cycle Assessment eu spen ’ s 16 th International Conference & Comparison of conventional Injection Mould Inserts to Additively Manufactured Inserts using Life,” Europen Society for Precision Engineering and Nanotechnology, no. June, 2016. [Google Scholar]
- M. Kafara, M. Süchting, J. Kemnitzer, H. Westermann, and R. Steinhilper, “Comparative Life Cycle Assessment of Conventional and Additive Manufacturing in Mold Core Making for CFRP Production,” Procedia Manuf, vol. 8, no. October 2016, pp. 223–230, 2017, doi:10.1016/j.promfg.2017.02.028. [CrossRef] [Google Scholar]
- N. Mrazović, · Danijel Mocibob, · Michael Lepech, and ·, “(8) Assessment Of Additive And Conventional Manufacturing_ Case Studies From The Aec INDUSTRY,” 2017. [Google Scholar]
- J. M. Paricio-Sánchez, R. Miralbés-Buil, J. A. Peña-Baquedano, and A. Casas-Albiñana, “Comparative analysis of ecodesign in the design and manufacturing methods for mechanical parts made of nylon PA6,” Proceedings of the XXIX International Congress INGEGRAF, pp. 40–48, 2019. [Google Scholar]
- S. Ford, “Additive manufacturing and sustainability : an exploratory study of the advantages and challenges,” vol. 137, 2016, doi:10.1016/j.jclepro.2016.04.150. [Google Scholar]
- D. Powell, A. E. W. Rennie, L. Geekie, and N. Burns, “Understanding powder degradation in metal additive manufacturing to allow the upcycling of recycled powders,” J Clean Prod, vol. 268, p. 122077, 2020, doi:10.1016/j.jclepro.2020.122077. [CrossRef] [Google Scholar]
- S. Liu and Y. C. Shin, “Additive manufacturing of Ti6Al4 V alloy : A review,” Mater Des, vol. 164, p. 107552, 2019, doi:10.1016/j.matdes.2018.107552. [CrossRef] [Google Scholar]
- R. Huang et al., “Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components,” J Clean Prod, vol. 135, pp. 1559–1570, 2016, doi:10.1016/j.jclepro.2015.04.109. [CrossRef] [Google Scholar]
- T. Hettesheimer, S. Hirzel, and H. B. Roß, “Energy savings through additive manufacturing: an analysis of selective laser sintering for automotive and aircraft components,” pp. 1227–1245, 2018. [Google Scholar]
- M. Spoerk, F. Arbeiter, I. Raguž, C. Holzer, and J. Gonzalez-Gutierrez, “Mechanical recyclability of polypropylene composites produced by material extrusion-based additive manufacturing,” Polymers (Basel), vol. 11, No. 8, 2019, doi:10.3390/polym11081318. [CrossRef] [Google Scholar]
- J. Faludi, M. Baumers, I. Maskery, and R. Hague, “Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate?,” J Ind Ecol, vol. 21, no. December, pp. S144–S156, 2017, doi:10.1111/jiec.12528. [CrossRef] [Google Scholar]
- X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li, and G. Ziegmann, “Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites,” J Clean Prod, vol. 142, pp. 1609–1618, 2017, doi:10.1016/j.jclepro.2016.11.139. [CrossRef] [Google Scholar]
- T. G. Gutowski, S. Sahni, J. M. Allwood, M. F. Ashby, and E. Worrell, “The energy required to produce materials: Constraints on energy-intensity improvements, parameters of demand,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 371, no. 1986, Mar. 2013, doi:10.1098/rsta.2012.0003. [Google Scholar]
- H. Fan et al., “Production of Synthetic Rutile from Molten Titanium Slag with the Addition of B2O3,” Journal of the Minerals, vol. 69, No. 10, pp. 1914–1919, 2017, doi:10.1007/s11837-017-2288-8. [Google Scholar]
- D. S. van Vuuren, S. J. Oosthuizen, and M. D. Heydenrych, “Titanium production via metallothermic reduction of TiCl 4 in molten salt,” vol. 111, no. MARCH, pp. 27–29, 2011. [Google Scholar]
- H. I. Pressing, I. Gas, P. Particle, and A. Lawley, “Gas Atomisation Learn more about Gas Atomisation Atomization Production of Rare Metal Powders,” 2011. [Google Scholar]
- G. Chen, S. Y. Zhao, P. Tan, J. Wang, C. S. Xiang, and H. P. Tang, “A comparative study of Ti-6Al-4 V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization,” Powder Technol, vol. 333, pp. 38–46, 2018, doi:10.1016/j.powtec.2018.04.013. [CrossRef] [Google Scholar]
- W. Yuming, H. Junjie, and S. Yanwei, “Spheroidization of Nd-Fe-B Powders by RF Induction Plasma Processing – ScienceDirect,” Rare Metal Materials and Engineering, vol. 42, No. 9, pp. 1810–1813, 2013. [CrossRef] [Google Scholar]
- M. Despeisse, M. Yang, S. Evans, S. Ford, and T. Minshall, “Sustainable Value Roadmapping Framework for Additive Manufacturing,” Procedia CIRP, vol. 61, pp. 594–599, 2017, doi:10.1016/j.procir.2016.11.186. [CrossRef] [Google Scholar]
- J. D. Paramore et al., “Powder metallurgy of titanium – past, present, and future,” International Materials Reviews, vol. 0, No. 0, pp. 1–53, 2017, doi:10.1080/09506608.2017.1366003. [Google Scholar]
- K. Kellens, R. Mertens, D. Paraskevas, W. Dewulf, and J. R. Duflou, “Environmental Impact of Additive Manufacturing Processes : Does AM contribute to a more sustainable way of part manufacturing ?,” Procedia CIRP, vol. 61, no. Section 3, pp. 582–587, 2017, doi:10.1016/j.procir.2016.11.153. [CrossRef] [Google Scholar]
- A. Espach and K. Gupta, “Sustainability in additive manufacturing-a review,” Proceedings of the International Conference on Industrial Engineering and Operations Management, no. August, pp. 3210–3218, 2020. [Google Scholar]
- R. Martens, “Strategies for Adopting Additive Manufacturing Technology Into Business Models This is to certify that the doctoral study by,” p. 140, 2018, [Online]. Available: https://scholarworks.waldenu.edu/dissertations [Google Scholar]
- S. Mohr and O. Khan, “3D Printing and Its Disruptive Impacts on Supply Chains of the Future,” Technology Innovation Management Review, vol. 5, No. 11, pp. 20–25, 2018, doi:10.22215/timreview/942. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.