Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 05004
Number of page(s) 24
Section Robotics and Mechatronics
DOI https://doi.org/10.1051/matecconf/202237005004
Published online 01 December 2022
  1. Rafael E. Hidalgo, Fernández, Pilar Carranza-Cañadas, Francisco J. García-Salcedo, Paula Triviño-Tarradas, “Parameterisation and Optimisation of a Hand-Rake Sweeper: Application in Olive Picking”, Agriculture, (2020), Vol.10, pp.379. DOI:10.3390/agriculture10090379. [CrossRef] [Google Scholar]
  2. “Low price electric 12 v electric battery olive harvest machine|machine|machine machinemachine battery – AliExpress”, Aliexpress.com, (2022). [Online]. Available: https://www.aliexpress.com/i/32510729481.html. [Google Scholar]
  3. “Sample Costs | The Olive Oil Source”, Oliveoilsource.com, 2022. [Online]. Available: https://www.oliveoilsource.com/page/sample-costs. [Accessed: 20- Feb- ].2022 [Google Scholar]
  4. Fountas S, Mylonas N, Malounas I, Rodias E, Hellmann Santos C, Pekkeriet E. Agricultural Robotics for Field Operations. Sensors. (2020); 20(9):2672. https://doi.org/10.3390/s20092672. [Google Scholar]
  5. Vougioukas, SG. (2019). Agricultural Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 365–392. http://dx.doi.org/10.1146/annurev-control-053018–023617 Retrieved from https://escholarship.org/uc/item/7b24n14 c. [Google Scholar]
  6. K. Zhang, K. Lammers, P. Chu, Z. Li and R. Lu, “System design and control of an apple harvesting robot”, Mechatronics, vol. 79, p. 102644, (2021). Available: 10.1016/j.mechatronics.2021.102644. [CrossRef] [Google Scholar]
  7. Shivaji Bachche, Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey, Robotics, (2015), vol. 4, pp.194–222. DOI:10.3390/robotics4020194. [Google Scholar]
  8. Yunchao Tang, Mingyou Chen, Chenglin Wang, Lufeng Luo, Jinhui Li, Guoping Lian, Xiangjun Zou, Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review, Frontiers in Plant Science, (2020), Vol.11, 510. DOI: 10.3389/fpls.2020.00510. [Google Scholar]
  9. Fei, Z., Vougioukas, S.G., (2021), Co-robotic harvest-aid platforms: Real-time control of picker lift heights to maximize harvesting efficiency, Computers and Electronics in Agriculture, 180, 105894. [Google Scholar]
  10. Peng, C., Vougioukas, S.G., (2020), Deterministic predictive dynamic scheduling for crop-transport co-robots acting as harvesting aids, Computers and Electronics in Agriculture, 178,105702. [CrossRef] [Google Scholar]
  11. Wang, C., Liu, S., Zhao, L., Luo, T., (2020), Virtual Simulation of Fruit Picking Robot Based on Unity3D, Journal of Physics: Conference Series, 1631(1),012033. [CrossRef] [Google Scholar]
  12. Luo, H., Tan, Y., (2018), Research on an under actuated dual separation plate harvestor, Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University, 40(12), pp.110–116. [Google Scholar]
  13. Aloisio, C., Mishra, R.K., Chang, C.-Y., English, J., (2012), Next generation image guided citrus fruit picker, 2012 IEEE Conference on Technologies for Practical Robot Applications, TePRA 2012, 6215651, pp.37–41. [Google Scholar]
  14. Zhang, K., Lammers, K., Chu, P., Li, Z., Lu, R., (2021), System design and control of an apple harvesting robot, Mechatronics, 79,102644. [CrossRef] [Google Scholar]
  15. Onishi, Y., Yoshida, T., Kurita, H. et al. An automated fruit harvesting robot by using deep learning. Robomech J 6, 13 (2019). https://doi.org/10.1186/s40648-019-0141-2. [Google Scholar]
  16. E. Cerruto and G. Manetto, “Vibration from Electric Hand-Held Harvesters for Olives,” Appl. Sci., vol. 12, No. 4, (2022), doi: 10.3390/app12041768. [CrossRef] [Google Scholar]
  17. M. Aliff, S. Dohta, T. Akagi and H. Li, “Development of a Simple-structured Pneumatic Robot Arm and its Control Using Low-cost Embedded Controller”, Procedia Engineering, vol. 41, pp.134–142, (2012). Available: 10.1016/j.proeng.2012.07.153. [CrossRef] [Google Scholar]
  18. Sergio Castro-Garcia, Uriel A. Rosa, Christopher J. Gliever, David Smith, Jacqueline K. Burns, William H. Krueger, Louise Ferguson, and Kitren Glozer, “Video Evaluation of Table Olive Damage during Harvest with a Canopy Shaker”, 23 HortTechnology Journal, (2009), vol. 19, No. 2, pp.260–266. DOI: https://doi.org/10.21273/HORTSCI.19.2.260. [Google Scholar]
  19. Dan Glăvan, Theoharis Babanatsas, Roxana Mihaela, Babanatis Merce, “Study of Harvesting Methods and Necessity of Olive Harvesting Robot”, Annals of Faculty Engineering Hunedoara– International Journal of Engineering, (2016), vol. 14, No. 3, pp.143–146. [Google Scholar]
  20. Luigi Solazzi, Roberto Scalmana, Riccardo Adamini, Rodolfo Faglia, Alberto Borboni, “Design of an innovative olive picking machine”, Agric Eng Int: CIGR Journal, (2014), vol. 16, No.3, pp.102–112. [Google Scholar]
  21. Bernardi, B., Falcone, G., Stillitano, T., (…), Bacenetti, J., De Luca, A.I., (2021), Harvesting system sustainability in Mediterranean olive cultivation: Other principal cultivar, Science of the Total Environment, 766,142508. [Google Scholar]
  22. A. Calvo, R. Deboli, C. Preti, and A. de Maria, “Daily exposure to hand arm vibration by different electric olive beaters,” J. Agric. Eng., vol. 45, No. 3, pp.103–110, (2014), doi: 10.4081/jae.2014.424. [CrossRef] [Google Scholar]
  23. Yuanshen Zhao, Liang Gong, Yixiang Huang, Chengliang Liu, A review of key techniques of vision-based control for harvesting robot, Computers and Electronics in Agriculture, (2016), Vol.127, pp.311–323. [CrossRef] [Google Scholar]
  24. Han, J., Liu, L., Zeng, H., Design and Implementation of Intelligent Agricultural Picking Mobile Robot Based on Color Sensor, Journal of Physics: Conference Series, (2021), 1757(1),012157. [CrossRef] [Google Scholar]
  25. Dewi, T., Mulya, Z., Risma, P., Oktarina, Y., (2021), BLOB analysis of an automatic vision guided system for a fruit picking and placing robot, International Journal of Computational Vision and Robotics, 11(3), pp.315–327. [CrossRef] [Google Scholar]
  26. Mavridou E, Vrochidou E, Papakostas GA, Pachidis T, Kaburlasos VG. Machine Vision Systems in Precision Agriculture for Crop Farming. Journal of Imaging. (2019); 5(12):89.https://doi.org/10.3390/jimaging5120089. [CrossRef] [Google Scholar]
  27. Baohua Zhang, Yuanxin Xie, Jun Zhou, Kai Wang, Zhen Zhang, “State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review”, Computers and Electronics in Agriculture, (2020), Vol. 177. [Google Scholar]
  28. Carlos Blanes, Martin Mellado, Coral Ortiz, Ángel Valera, “Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables”, Spanish Journal of Agricultural Research, (2011), Vol.9, No.4, pp.1130–1141.DOI: 10.5424/sjar/20110904-501-10. [Google Scholar]
  29. Ahmad R., Ayoub S., “A comparative study of hand-held harvesting machine with traditional methods used for olive harvesting in Jordan, Proceedings of the 5th Int. Conf. Olivebioteq, (2014), pp.206–211. [Google Scholar]
  30. Francisco J. Castillo-Ruiz, Sergio Tombesi, Daniela Farinelli, “Olive fruit detachment force against pulling and torsional stress”, Spanish Journal of Agricultural Research, (2018), Vol.16, No.1, https://doi.org/10.5424/sjar/2018161-12269. [Google Scholar]
  31. Navas, E.; Fernández, R.; Sepúlveda, D.; Armada, M.; Gonzalez-de-Santos, P. Soft Grippers for Automatic Crop Harvesting: A Review. Sensors (2021), 21, 2689.https://doi.org/10.3390/s21082689 [CrossRef] [Google Scholar]
  32. Peng Y, Liu Y., Yang Y., Yang Yi, Liu N., Sun Y., (2018), Research progress on application of soft robotic gripper in fruit and vegetable picking, Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 34(9), pp. 11–20. [Google Scholar]
  33. Brown, J., Sukkarieh, S., (2021), Design and evaluation of a modular robotic plum harvesting system utilizing soft components, Journal of Field Robotics, 38(2), pp.289–306. [CrossRef] [Google Scholar]
  34. E. Brown et al., “Universal robotic gripper based on the jamming of granular material,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, No. 44, pp.18809–18814, (2010), doi: 10.1073/pnas.1003250107. [CrossRef] [Google Scholar]
  35. J. Gao et al., “Development and evaluation of a pneumatic finger-like end-effector for cherry tomato harvesting robot in greenhouse,” Comput. Electron. Agric., vol. 197, no. February, p.106879, 2022, doi: 10.1016/j.compag.2022.106879. [CrossRef] [Google Scholar]
  36. M. Ibrahim, “Development of an electrical hand-held olive harvester”, Misr Journal of Agricultural Engineering, vol. 35, No. 3, pp.827–846, (2018). Available: 10.21608/mjae.2018.95541. [CrossRef] [Google Scholar]
  37. Ahmed, Shaheen. “The Open Educator.” The Open Educator, (2017). [Google Scholar]
  38. Z. Littlefield et al., “Evaluating end-effector modalities for warehouse picking: A vacuum gripper vs. a 3-finger under actuated hand,” 2016 IEEE International Conference on Automation Science and Engineering (CASE), (2016), pp.1190–1195, doi: 10.1109/COASE.2016.7743540. [Google Scholar]
  39. P. Patel and B. Bhavsar, “Object Detection and Identification”, International Journal of Advanced Trends in Computer Science and Engineering, vol. 10, No. 3, pp.1611–1618, (2021). Available: 10.30534/ijatcse/2021/181032021. [CrossRef] [Google Scholar]
  40. “GetHub,” [Online]. Available: https://github.com/tzutalin/labellmg. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.