Open Access
Issue
MATEC Web Conf.
Volume 370, 2022
2022 RAPDASA-RobMech-PRASA-CoSAAMI Conference - Digital Technology in Product Development - The 23rd Annual International RAPDASA Conference joined by RobMech, PRASA and CoSAAMI
Article Number 02003
Number of page(s) 10
Section Computational & Data-driven Modelling Seminar
DOI https://doi.org/10.1051/matecconf/202237002003
Published online 01 December 2022
  1. R. Prăvălie, I. Sîrodoev, J. Ruiz-Aria and M. Dumitraşcu, Renew. enrgy, 193, (2022) [Google Scholar]
  2. E.H. Kalyesubula, Ceramics and Chemical Engineering Divisio, (2006) [Google Scholar]
  3. W. Yuan, S. Zang, C. Su, D, Yan and Z. Wu, 252 (2022). [Google Scholar]
  4. T.H. Çetin, J. Zhu, E. Ekici and M. Kanoglu, Energy Convers and Manage, 260 (2022) [Google Scholar]
  5. J. Wandt, A. Freiberg, R. Thomas, Y. Gorlin A. Seibel, R. Jung, H.A. Gasteiger and M. Tromp, J. Mat Chem. A, 47 (2016). [Google Scholar]
  6. S. Choi and G. Wang, Ad. Mat. tech, 3, (2018) [Google Scholar]
  7. D. Capsoni, M. Bini, S. Ferrari and P. Mustarelli, Carbon Nanomater Ad. Energy Sys, 1, (2015) [Google Scholar]
  8. S.P.P. Badwal, S.S. Giddey, C. Munnings, S.I. Bhatt and A.F. Hollenkamp, Front. Chem, 2 (2014). [Google Scholar]
  9. T. Ogasawara, A. Débart, M. Holzapfel, P. Novák and P.G. Bruce, J. Am. Chem. Soc., 128 (2006) [Google Scholar]
  10. J. Read, J. Electrochem. Soc., 149 (2002) [Google Scholar]
  11. S. Kang, Y. Mo, S.P. Ong and G. Ceder, Chem. Mater., 25(2013). [Google Scholar]
  12. J.S. Hummelshøj, A.C. Luntz and J.K. Nørskov, J. Chem. Phys. 138 (2013) [Google Scholar]
  13. Y. Mo, S.P. Ong and G. Ceder, Phys. Rev. B, 84 (2011) [Google Scholar]
  14. Y.C. Lu, H.A. Gasteiger and Y. Shao-Horn, J. Am. Chem. Soc., 133 (2011) [Google Scholar]
  15. W. Choi, S. Jee, H.K. Cho, C.H. Ahn, G. Yang, J. Lee and C. Yu, J. Mater. Chem. A, 3 (2015) [Google Scholar]
  16. E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta and H.R. Byon, Nano Lett., 13 (2013) [Google Scholar]
  17. X. Lin, Y. Zhang, L. Li and A Yu, ACS nano, 5, (2011) [Google Scholar]
  18. D. Zhai, H.H. Wang, J. Yang, K.C. Lau, K. Li, K. Amine and L.A. Curtiss, Curtiss, J. Am. Chem. Soc., 135 (2013) [Google Scholar]
  19. S. Wang, S. Dong, J. Wang, L. Zhang, P. Han, C. Zhang, X. Wang, K. Zhang, Z. Lan and G. Cui, J. Mater. Chem., 22 (2012) [Google Scholar]
  20. M. Lee, Y. Hwang, K-H. Yun and Y-C, Chung, J. power Sources, 288, (2015) [Google Scholar]
  21. N.V. Boas, J.B.S. junior, L.C. Varanda, S.A. Machado and M.L. Calegaro, Appl Catal B: Environ, 258, (2019) [Google Scholar]
  22. S-H. peng, T-H. Cheng, C-H. Lee, H-C. Lu and S.J. Lue, j. power Sources, 471 (2020) [Google Scholar]
  23. Y. Liu, B. Li, Z Cheng, C. Li, X. Zhang, S. Guo, P. He and H. Zhou, J. Power Sources, 396 (2018) [Google Scholar]
  24. G. Zhao, Y. Niu, Li. Zhang and K. Sun, J. Power Sources, 270 (2014) [Google Scholar]
  25. A. Eftekhari and B. Ramanujam., J. Mater. Chem., 5 (2017) [Google Scholar]
  26. W. Zhua, X. Chen, J. Jin, X. Di, C. Liang and Z. Liu, Chinese J. Catal, 41(2020) [Google Scholar]
  27. C. Wang, L. Jin, H. Shang, H. Xu, Y. Shiraishi and Y. Du, Chin Chem Lett, 32 (2021) [Google Scholar]
  28. A. Débart, A.J. Paterson, Ji. Bao, P.G. Bruce, Angew. Chem. Int. Ed., 47 (2008) [Google Scholar]
  29. T.A. Mellan, K.P. Maenetja, P.E. Ngoepe, S.M. Woodley, C. Richard, A. Catlow and R. Grau-Crespo, R. Soc. Chem, 47 (2013) [Google Scholar]
  30. K.P. Maenetja and P.E. Ngoepe, ACS Omega, 7 (2022) [Google Scholar]
  31. K.P. Maenetja and P.E. Ngoepe, “First Principles Study of Oxygen Adsorption on Li-MO2 (M = Mn, Ti and V) (110) Surface,” Journal of The Electrochemical Society, vol. 168, p. 1, 2021. [Google Scholar]
  32. C. Li, X. Zhang, S. Guo, Z. Cheng, P. He and H. Zhou, “J. Power Sources, 395 (2018 [Google Scholar]
  33. S. Vankova, C. Francia, J. Amici, J. Zeng, S. Bodoardo, N. Penazzi, G. Collins, H. Geaney and C. O’Dwyer, ChemSusChem., 10 (2017). [Google Scholar]
  34. K. Liao, X. Wang, Y. Sun, D. Tang, M. Han, P. He, X. Jiang, T. Zhang and H. Zhou, Energy & Environ Science, 8 (2015) [Google Scholar]
  35. G. Kresse and J. Futhmuller., Phys. Rev., 54 (1996) [Google Scholar]
  36. J.P Perdew, Phys. Rev. B, 72, (1992) [Google Scholar]
  37. S. Grimme, S. Ehrlich and L. Goerigk, J. com chem, 32 (2011) [Google Scholar]
  38. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, The J. chem phys, 132 (2010) [Google Scholar]
  39. D. Santos-Carballal, A. Roldan, R. Grau-Crespo and N.H. de Leeuw, PhysChem, 16 (2014) [Google Scholar]
  40. D. Santos-Carballal, A. Roldan and N.H. de Leeuw, The J. Phys Chem C, 120 (2016) [Google Scholar]
  41. D. Santos-Carballal, A. Roldan, N.Y. Dzade and N.H. de Leeuw, Ser A, Mathl, phys, and eng sci, 376 (2018) [Google Scholar]
  42. V. Postica, A. Vahl, J. Strobel, D. Santos-Carballal, O. Lupan, A. Cadi-Essadek, N.H. de Leeuw, F. Schütt, O. Polonskyi, T. Strunskus, M. Baum, L. Kienle, R. Adelung and F. Faupel, J.f Mat Chem A, 6 (2018) [Google Scholar]
  43. S.C. Abrahams and J.L. Bernstein, j. physi chem, 55 (1971) [Google Scholar]
  44. N. Mehtougui, D. Rached, R. Khenata, H. Rached, M. Rabah and S. Bin-Omran, Mats sci in semicon proces, 15 (2012) [Google Scholar]
  45. J.S. Tse, D.D. Klug, K. Uehara, Z.Q. Li, J. Haines and J.M. Léger, Geochim Cosmochim Act, 61(1997) [Google Scholar]
  46. J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Meng, Q. Zhang, L. Gu, J. Cao, L. Li, S.C. Haw and Q. Shao, Chem, vol. 8 (2022) [Google Scholar]
  47. S.C. Sun, H. Jiang, Z.Y. Chen, Q. Chen, M.Y. Ma, L. Zhen, B. Song and C.Y. Xu, Angew Chem Int Ed 61 (2022). [Google Scholar]
  48. E.H.P. Cordfunke and R.J.M. Konings, Thermochimica Acta, 129 (1988) [Google Scholar]
  49. St. C. Hugh and J. Nell, Geochim Cosmochim Act, 61(1997) [Google Scholar]
  50. M.J. Mehl, B.M. Klein and D.A. Papaconstantopoulos, Intermetal Compd: Principles and Practice, 1 (1995). [Google Scholar]
  51. Y. Li and Z. Zeng, Inter J.f Modern Phys C, 19 (2008) [Google Scholar]
  52. K.P. Bohnen, R. Heid, O. de la Pena Seaman, B. Renker, P. Adelmann and H. Schober, Phys Review B, 75 (2007) [Google Scholar]
  53. Yu.N. Gornostyrev, O.Yu. Kontsevoi, A.F. Maksyutov, A.J. Freeman, M.I. Katsnelson, A.V. Trefilov, et al., Phys. Rev. B.,(2004). [Google Scholar]
  54. D.A. Pankhurst, D. Nguyen-Manh, D.G. Pettifor, Phys. Rev. B., 69 (2004) [Google Scholar]
  55. J. Riga, C. Tenret-noel, J.-J, pireaux, R. Caudano, J. Verbist and Y. Gobillon, Phys. Scr, 16 (1977) [Google Scholar]
  56. F. Creazzo and S. Luber, App Surf SCi, 570 (2021) [Google Scholar]
  57. J. De Almeida and R. Ahuja, Phys. Rev. B, 73 (2006) [Google Scholar]
  58. N. Mehtougui, D. Rached, R Khenata, H. Rached, M. Rabah and S. Bin-Omran, Mater. Sci. Semicon. Proces, 15 (2012) [Google Scholar]
  59. C. Y. Ouyang, S. Q. Shi and M. S. Lei, J. Alloys Compd., 474 (2009) [Google Scholar]
  60. P.W. Tasker, J. Phys. C: Solid State Phys., 12(1972) [Google Scholar]
  61. G. W. Watson, E. T. Kelsey, N. H. de Leeuw, D. J. Harris and S. C. Parker, J. Chem. Soc., Faraday Trans., 92 (1996) [Google Scholar]
  62. H. Wang and W.F. Schneider, J. Chem Phys, 127 (2007) [Google Scholar]
  63. S. Albertin, L.R. Merte,. Lundgren. R. Martin, J.F. Weaver, A-C. Dippel, O. Gutowski and U. Hejral Phys Chem, vol. 126 (2022). [Google Scholar]
  64. M.J.S. Abb, T. Weber, L. Glatthaar, and H. Over, Langmuir, 35, (2019) [Google Scholar]
  65. G. Wulff Z. and K. Miner., 34 (1901) [Google Scholar]
  66. R. R. Maphanga, S. C. Parker and P. E. Ngoepe, Surf Sci, vol. 603 (2009) [Google Scholar]
  67. T.A. Mellan, K.P. Maenetja, P.E. Ngoepe, S.M. Woodley. R.A. Catlow and R. Grau-Crespo, Surf Sci, vol. 603 (2009) [Google Scholar]
  68. Mellan, T.A. and Grau-Crespo R, J. Chem. Phys, 137 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.