Open Access
Issue |
MATEC Web Conf.
Volume 369, 2022
40th Annual Conference - Meeting of the Departments of Fluid Mechanics and Thermomechanics in the connection with XXIII. International Scientific Conference - The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy (40th. MDFMT & XXIII. AEaNMiFMaE-2022)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 7 | |
Section | Special Experimental Methods in Fluid Mechanics and Energy | |
DOI | https://doi.org/10.1051/matecconf/202236903001 | |
Published online | 04 November 2022 |
- Takla, M., Kamfjord, N.E., Tveit, H., Kjelstrup S. (2013). Energy and exergy analysis of the silicon production process. Energy, 58, 138-146. [CrossRef] [Google Scholar]
- Kizek, J., Lazic, L. (1999). Simulation method for optimization of a mixture of fuel gases. Metalurgija, 38(2), 109-113. [Google Scholar]
- Gil, S., Góral, J., Ochman, J., Saternus, M., Bialik, W. (2014). An experimental study on the air and gas removal method in a model of furnace for ferroalloy production. Metalurgija, 53(4), 447- 450. [Google Scholar]
- Dzurňák, R., Varga, A., Jablonský, G., ...Pástor, M., Kizek, J. (2020). Influence of air infiltration on combustion process changes in a rotary tilting furnace. Processes, 8(10), 1-16. [Google Scholar]
- Els, L., Andrew, N., Noakes, S. (2013). Process Modeling and testing methods for evaluating ferroalloy furnace off-gas waste energy. Proceedings of INFACON XIII (pp. 889-908). Almaty, Kazakhstan. [Google Scholar]
- Fredrich, D., Jones, W.P., Marquis A.J. (2019). The stochastic fields method applied to a partially premixed swirl flame with wall heat transfer. Combustion and Flame, 205, 446-456. [CrossRef] [Google Scholar]
- Pitsch, H. (2006). Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics, 38, 453-482. [CrossRef] [Google Scholar]
- Chase, M.W., Jr. (1998). NIST-JANAF Thermochemical Tables. Fourth Edition. American Institute of Physics, New York. [Google Scholar]
- Szargut, J. (1985). Termodynamika. PWN, Warszawa. [Google Scholar]
- Curran, H. J. (2019). Developing detailed chemical kinetic mechanisms for fuel combustion. Proceedings of the Combustion Institute, 37, 57-81. [CrossRef] [Google Scholar]
- Veynante, D., Vervisch, L. (2002). Turbulent combustion modeling. Progress in energy and combustion science, 28(3), 193-266. [CrossRef] [Google Scholar]
- Dryer, F. L., Glassman, I. (1972). High temperature oxidation of CO and CH4. 14th Symposium (International) on Combustion. Combustion Institute, Pittsburgh, 14(1), 987-1003. [Google Scholar]
- Khalil, E.E., Spalding, D.B., Whitelaw, J.H. (1975) Calculation of local flow properties in two-dimensional furnaces. International Journal of Heat Mass Transfer, 18(6), 775-791. [CrossRef] [Google Scholar]
- Westbrook, C.K., Dryer, F.L. (1981). Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 27(1-2), 31- 44. [CrossRef] [Google Scholar]
- Westbrook, C.K., Dryer, F.L. (1984). Chemical Kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science, 10(1), 1-57. [CrossRef] [Google Scholar]
- Gil, S., Bialik, W., Kozlowski S. (2021). Generation of Nitrogen Oxides in Submerged Arc Furnace during the Production of Ferroalloys. Advances in Thermal Processes and Energy Transformation, 4, 37-41. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.