Open Access
Issue
MATEC Web Conf.
Volume 369, 2022
40th Annual Conference - Meeting of the Departments of Fluid Mechanics and Thermomechanics in the connection with XXIII. International Scientific Conference - The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy (40th. MDFMT & XXIII. AEaNMiFMaE-2022)
Article Number 02012
Number of page(s) 9
Section Modelling and Simulation in Fluid Mechanics and Energy
DOI https://doi.org/10.1051/matecconf/202236902012
Published online 04 November 2022
  1. Zhou, M d. Mahbub Alam, Yang, H.X., Guo, H., Wood, D.H. (2011). Fluid forces on a very low Reynolds number airfoil and their prediction. International Journal of Heat and Fluid Flow, 32(1), 329-339. [CrossRef] [Google Scholar]
  2. Brendel, M., Mueller, T.J. (1988). Boundary-layer measurements on an airfoil at low Reynolds number. Aircraft, 25, 317-612. [CrossRef] [Google Scholar]
  3. Usherhood, J.R., Ellington, C.P. (2002). The aerodynamics of revolving wings, I. Model hawkmoth wings. Journal of Experimental Biology, 205(11), 1547-1564. [CrossRef] [Google Scholar]
  4. Antonia, R.A., Rajagopalan, S. (1990). Determination of drag of a circular cylinder. AIAA Journal, 28(10), 1833-1834. [CrossRef] [Google Scholar]
  5. Son, O., Cetiner, O. (2016). Drag Prediction in the Near Wake of a Circular Cylinder based on DPIV Data. Journal of Applied Fluid Mechanics, 9, 1963-1968. [CrossRef] [Google Scholar]
  6. Brennan, J.C., Fairhurst, D.J., Morris R.H., McHale, G., Newton, M.I. (2014). Investigation of the drag reducing effect of hydrophobized sand on cylinders. Journal of Physics D: Applied Physics, 47(20), 205302. [CrossRef] [Google Scholar]
  7. Cao, S., Ozono, S., Tamura, Y., Ge, Y., Kikugawa, H. (2010). Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder. Journal of Fluids and Structures, 26(5), 685-702. [CrossRef] [Google Scholar]
  8. Goodfellow, S.D., Yarusevych, S., Sullivan, P.E. (2012). Momentum coefficient as a parameter for aerodynamic flow control with synthetic jets. AIAA Journal, 51(3), 623-631. [Google Scholar]
  9. Henderson, R.D. (1995). Details of the drag curve near the onset of vortex shedding. Physics of Fluids, 7(9), 2102-2104. [CrossRef] [Google Scholar]
  10. Tangler, J. Somers, D. (1995). NREL airfoil families for HAWT's, report of the National Renewable Energy Laboratory (January 1995, Cole Boulevard Golden, Colorado, USA). [CrossRef] [Google Scholar]
  11. Yanovych, V., Duda, D., Uruba, V. (2021). Structure turbulent flow behind a square cylinder with an angle of incidence. European Journal of Mechanics, B/Fluids, 85, 110-123. [CrossRef] [Google Scholar]
  12. Yanovych, V., Duda, D., Uruba, V., Tomášková, T. (2022). Hot-Wire Investigation of Turbulence Topology behind Blades at Different Shape Qualities. Processes, 10(3), 522. [CrossRef] [Google Scholar]
  13. Yanovych, V., Duda, D., Horáček, V., Uruba, V. (2019). Research of a wind tunnel parameters by means of cross-section analysis of air flow profiles. AIP Conference Proceedings, 2189, 020024. [Google Scholar]
  14. Son, O., Cetiner, O. (2016). Drag Prediction in the Near Wake of a Circular Cylinder based on DPIV Data. Journal of Applied Fluid Mechanics, 9, 1963-1968. [CrossRef] [Google Scholar]
  15. Duda, D., Uruba, V., Yanovych, V. (2021). Wake width: Discussion of several methods how to estimate it by using measured experimental data. Energies, 14(15), 4712. [CrossRef] [Google Scholar]
  16. Yanovych, V., Duda, D., Uruba, V., Antoš, P. (2021). Anisotropy of turbulent flow behind an asymmetric airfoil. SN Applied Sciences, 3(12), 885. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.