Open Access
MATEC Web Conf.
Volume 367, 2022
21st Conference on Power System Engineering
Article Number 00004
Number of page(s) 10
Published online 14 October 2022
  1. Kaufman, J., Špirit, Z., Vasudevan, V., Steiner, M., Mannava, S., Brajer, J., Pína, L. and Mocek, T., 2021. Effect of Laser Shock Peening Parameters on Residual Stresses and Corrosion Fatigue of AA5083. Metals, 11(10), p.1635. [CrossRef] [Google Scholar]
  2. Špirit, Z., Brajer, J., Kaufman, J., Chocholoušek, M., Bohm, M., Kott, J. and Strejcius, J., 2018. Effect of Laser Shock Peening on Fatigue life of Austenitic stainless steels. IOP Conference Series: Materials Science and Engineering, 461, p.012084. A. Mecke, I. Lee, J.R. Bakerjr., M.M. Banaszak Holl, B.G. Orr, Eur. Phys. J. E 14, 7 (2004) [CrossRef] [Google Scholar]
  3. R, S., P, G., Gupta, R., G, R., Pant, B., Kain, V., K, R., Kaul, R. and Bindra, K., 2019. Laser Shock Peening and its Applications: A Review. Lasers in Manufacturing and Materials Processing, 6(4), pp. 424-463. [CrossRef] [Google Scholar]
  4. Spirit, Z., Kaufman, J., Strejcius, J., Chocolousek, M. and Kott, J., 2019. Increase of the Fatigue Life of Stainless Steel by Laser Shock Peening. DAAAM Proceedings, pp. 0826-0831 [CrossRef] [Google Scholar]
  5. Gujba, A. and Medraj, M., 2014. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening. Materials, 7(12), pp. 7925-7974 [CrossRef] [Google Scholar]
  6. Montross, C., 2002. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24(10), pp.1021-1036 [CrossRef] [Google Scholar]
  7. Qiao, H., Zhao, J. and Gao, Y., 2015. Experimental investigation of laser peening on TiAl alloy microstructure and properties. Chinese Journal of Aeronautics, 28(2), pp. 609-616 [CrossRef] [Google Scholar]
  8. Hu, Y., Yao, Z. and Hu, J., 2006. 3-D FEM simulation of laser shock processing. Surface and Coatings Technology, 201(3-4), pp. 1426-1435 [CrossRef] [Google Scholar]
  9. Keller, S., Chupakhin, S., Staron, P., Maawad, E., Kashaev, N. and Klusemann, B., 2018. Experimental and numerical investigation of residual stresses in laser shock peened AA2198. Journal of Materials Processing Technology, 255, pp. 294-307 [CrossRef] [Google Scholar]
  10. Zhou, L., He, W., Luo, S., Long, C., Wang, C., Nie, X., He, G., Shen, X. and Li, Y., 2016. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel. Journal of Alloys and Compounds, 655, pp. 66-70 [CrossRef] [Google Scholar]
  11. Wang, Z., Sun, G., Lu, Y., Chen, M., Bi, K. and Ni, Z., 2020. Microstructural characterization and mechanical behavior of ultrasonic impact peened and laser shock peened AISI 316L stainless steel. Surface and Coatings Technology, 385, p.125403 [CrossRef] [Google Scholar]
  12. Wang, C., Luo, K., Wang, J. and Lu, J., 2022. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening. International Journal of Plasticity, 150, p.103191 [CrossRef] [Google Scholar]
  13. Wang, C., Luo, K., Bu, X., Su, Y., Cai, J., Zhang, Q. and Lu, J., 2020. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel. Corrosion Science, 177, p.109027 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.