Open Access
Issue
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 05020
Number of page(s) 7
Section Fibre Reinforced Cementitious Materials
DOI https://doi.org/10.1051/matecconf/202236405020
Published online 07 October 2022
  1. D. Zhang, Q. Li, Y. Chen, M. Cao, L. He, and B. Zhang, An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection. Image and Vision Computing, 57, pp. 130–146 (2016). [Google Scholar]
  2. T. Nishikawa, J. Yoshida, T. Sugiyama, and Y. Fujino, “Concrete crack detection by multiple sequential image filtering,” Computer-Aided Civil and Infrastructure Engineering, vol. 27, no. 1, pp. 29–47, 2012. [CrossRef] [Google Scholar]
  3. H. Oliveira, P. Correia, Automatic road crack segmentation using entropy and image dynamic thresholding. Proc. of IEEE Signal Processing Conf., Taipei. pp. 622-626, (2009) [Google Scholar]
  4. B. Santhi, G. Krishnamurthy, S. Siddharth, P. Ramakrishnan, Automatic detection of cracks in pavements using edge detection operator. Jnl. of theoretical and Applied Information Technology, 36(2), pp. 199-205 (2012). [Google Scholar]
  5. S. W. Liu, J. H. Huang, J. C. Sung, and C. C. Lee, Detection of cracks using neural networks and computational mechanics. Computer Methods in Applied Mechanics and Engineering, 191(25-26), pp. 2831–2845 (2002). [CrossRef] [Google Scholar]
  6. M. S. Kaseko, Z. P. Lo, and S. G. Ritchie, Comparison of Traditional and neural classifiers for pavement-crack detection, Jnl. of Transportation Engineering, 120(4), pp. 552–569 (1994). [CrossRef] [Google Scholar]
  7. Y.-J. Cha, W. Choi, and O. Buyukozturk, Deep learning based crack damage detection using convolutional neural networks, Computer-Aided Civil and Infrastructure Engineering, 32(5), pp. 361–378 (2017). [CrossRef] [Google Scholar]
  8. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521 (7553), pp. 436–444 (2015). [Google Scholar]
  9. Z. Qu, F. R. Ju, Y. Guo et al., Concrete surface crack detection with the improved pre-extraction and the second percolation processing methods, PloS One, 13(7), Article IDe0201109 (2018). [Google Scholar]
  10. M.M. Khani, S. Vahidnia, Leila Ghasemzadeh, Deep-learning-based crack detection with applications for the structural health monitoring of gas turbines. Structural Health Monitoring 19(5), (2019) [Google Scholar]
  11. A. Garcia-Garcia, S. Orts-Escolano, S.O. Oprea, V. Villena-Martinez, J. Garcia-Rodriguez, A Review on deep learning techniques applied to semantic segmentation. arXiv:1704.06857v1 [cs.CV] (2017). [Google Scholar]
  12. J. Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for Semantic Segmentation. CVPR Open Access version: https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf (2015). [Google Scholar]
  13. C.V. Dung, L.D. Anh, Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction. 99, pp 52-58 (2019). [CrossRef] [Google Scholar]
  14. Y. Liu, S. Cho, B.F. Spencer, Automated assessment of cracks on concrete surfaces using adaptive digital image processing. Smart Struct Syst; 14(4), pp. 719–741, (2014). [CrossRef] [Google Scholar]
  15. S. Li, X. Zhao, G. Zhou, Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network. Computer-Aided Civil and Infrastructure Engineering. 34(7), pp. 616-634, (2019). [CrossRef] [Google Scholar]
  16. V. Hoskere, Y. Narazaki, T.A. Hoang, B.F. Spencer Jr, MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure. Journal of Civil Structural Health Monitoring, 10, pp.757–773 (2020). [CrossRef] [Google Scholar]
  17. N. Otsu. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man. Cybern, pp. 62-66. (1979). [CrossRef] [Google Scholar]
  18. J.J. Kim, A-R. Kim, S-W. Lee, Artificial Neural Network-Based Automated Crack Detection and Analysis for the Inspection of Concrete Structures. Appl. Sci., 10(22), (2020); https://doi.org/10.3390/app10228105 [Google Scholar]
  19. F. Yu, W. Sun, J. Li, Y. Zhao, Y. Zhang, G. Chen, An improved Otsu method for oil spill detection from SAR images. Oceanologia. 59(3), pp. 311-317 (2017). [CrossRef] [Google Scholar]
  20. N-D. Hoang, Detection of Surface Crack in Building Structures Using Image Processing Technique with an Improved Otsu Method for Image Thresholding. Advances in Civil Engineering. |Article ID 3924120 | https://doi.org/10.1155/2018/3924120 (2018). [Google Scholar]
  21. D. Wilson, T. Martinez, The need for small learning rates on large problems, Proc. of 2001 International Joint Conference on Neural Networks (IJCNN’01), pp. 115–119, IEEE, Washington, (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.