Open Access
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
Article Number 05008
Number of page(s) 6
Section Developments in Concrete Material Technology, Assessment and Processing
Published online 30 September 2022
  1. M. Edraki, T. Baumgartl, E. Manlapig, D. Bradshaw, D. M. Franks, and C. J. Moran, “Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches, ” J. Clean. Prod., vol. 84, p. 10, 2014. [Google Scholar]
  2. M. Of, T. H. E. Botanical, S. Of, S. Africa, A. Of, and K. Botanic, “Technical Publications of the South African National, ” 2009. [Google Scholar]
  3. D. Kossoff, W. E. Dubbin, M. Alfredsson, S. J. Edwards, M. G. Macklin, and K. A. HudsonEdwards, “Mine tailings dams: Characteristics, failure, environmental impacts, and remediation, ” Applied Geochemistry, vol. 51. Elsevier Ltd, p. 17, Dec-2014. [Google Scholar]
  4. J. Koch et al., “Proximal sensor analysis of mine tailings in South Africa: An exploratory study, ” J. Geochemical Explor., vol. 181, p. 13, 2017. [Google Scholar]
  5. J. S. Adiansyah, M. Rosano, S. Vink, and G. Keir, “A framework for a sustainable approach to mine tailings management: Disposal strategies, ” J. Clean. Prod., vol. 108, p. 27, 2015. [Google Scholar]
  6. M. W. Gitari et al., “Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials, ” J. African Earth Sci., vol. 137, p. 11, 2018. [Google Scholar]
  7. S. Ramanathan, P. Perumal, M. Illikainen, and P. Suraneni, “Mechanically activated mine tailings for use as supplementary cementitious materials, ” RILEM Tech. Lett., vol. 6, pp. 61–69, 2021. [CrossRef] [Google Scholar]
  8. J. Kiventerä, P. Perumal, J. Yliniemi, and M. Illikainen, “Mine tailings as a raw material in alkali activation: A review, ” Int. J. Miner. Metall. Mater., vol. 27, pp. 1009–1020, 2020. [CrossRef] [Google Scholar]
  9. Y. Ding, F. Shang, S. Li, and Y. Gao, “Discussion on andesite asphalt mixture used as pavement lower surface, ” Key Eng. Mater., vol. 599, p. 4, 2014. [Google Scholar]
  10. M. Hamidi, L. Kacimi, M. Cyr, and P. Clastres, “Evaluation and improvement of pozzolanic activity of andesite for its use in eco-efficient cement, ” Constr. Build. Mater., vol. 47, p. 10, 2013. [Google Scholar]
  11. F. Bodénan et al., “Arsenic behaviour in gold-ore mill tailings, Massif Central, France: Hydrogeochemical study and investigation of in situ redox signatures, ” Appl. Geochemistry, vol. 19, p. 15, 2004. [Google Scholar]
  12. J. Kiventerä, H. Sreenivasan, C. Cheeseman, P. Kinnunen, and M. Illikainen, “Immobilization of sulfates and heavy metals in gold mine tailings by sodium silicate and hydrated lime, ” J. Environ. Chem. Eng., vol. 6, p. 7, 2018. [Google Scholar]
  13. G. Yao, Q. Liu, J. Wang, P. Wu, and X. Lyu, “Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings, ” J. Clean. Prod., vol. 217, p. 10, 2019. [Google Scholar]
  14. G. Bangalore Chinnappa and R. C. Karra, “Experimental and Statistical Evaluations of Strength Properties of Concrete with Iron Ore Tailings as Fine Aggregate, ” J. Hazardous, Toxic, Radioact. Waste, vol. 24, p. 14, 2020. [Google Scholar]
  15. L. Cai, B. Ma, X. Li, Y. Lv, Z. Liu, and S. Jian, “Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness, ” Constr. Build. Mater., vol. 128, p. 12, 2016. [CrossRef] [Google Scholar]
  16. M. B. Chaithanya, “Properties of Sfrc With Partial Replacement of Cement & Sand By C.O.T & I.O.T, ” Int. J. Res. Eng. Technol., vol. 04, p. 6, 2015. [Google Scholar]
  17. F. A. Kuranchie, S. K. Shukla, D. Habibi, and A. Mohyeddin, “Utilisation of iron ore tailings as aggregates in concrete, ” Cogent Eng., vol. 2, p. 11, 2015. [Google Scholar]
  18. X. Lv, W. Shen, L. Wang, Y. Dong, J. Zhang, and Z. Xie, “A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation, ” J. Clean. Prod., vol. 211, p. 12, 2019. [Google Scholar]
  19. S. Oritola, A. L. Saleh, and A. R. Mohd Sam, “Performance of Iron Ore Tailings as Partial Replacement for Sand in Concrete, ” Appl. Mech. Mater., vol. 735, p. 6, 2015. [Google Scholar]
  20. A. U. Shettima, M. W. Hussin, Y. Ahmad, and J. Mirza, “Evaluation of iron ore tailings as replacement for fine aggregate in concrete, ” Constr. Build. Mater., vol. 120, p. 8, 2016. [Google Scholar]
  21. H. Akbulut and C. Gürer, “Use of aggregates produced from marble quarry waste in asphalt pavements, ” Build. Environ., vol. 42, p. 10, 2007. [Google Scholar]
  22. S. Zhao, J. Fan, and W. Sun, “Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete, ” Constr. Build. Mater., vol. 50, p. 9, 2014. [Google Scholar]
  23. E. A. Uchechukwu, “Evaluation of the Iron Ore Tailings from Itakpe in Nigeria as Concrete Material, ” Adv. Mater., vol. 3, p. 27, 2014. [CrossRef] [Google Scholar]
  24. L. M. Amaratunga and D. N. Yaschyshyn, “Development of a high modulus paste fill using fine gold mill tailings, ” Geotech. Geol. Eng., vol. 15, p. 14, 1997. [Google Scholar]
  25. I. Young, S. Renault, and J. Markham, “Low levels organic amendments improve fertility and plant cover on non-acid generating gold mine tailings, ” Ecol. Eng., vol. 74, p. 8, 2015. [Google Scholar]
  26. J. Kiventerä, I. Lancellotti, M. Catauro, F. D. Poggetto, C. Leonelli, and M. Illikainen, “Alkali activation as new option for gold mine tailings inertization, ” J. Clean. Prod., vol. 187, p. 9, 2018. [Google Scholar]
  27. B. N. S. Kumar, “Utilization of Iron Ore Tailings As Replacement To Fine Aggregates in Cement Concrete Pavements, ” Int. J. Res. Eng. Technol., vol. 03, p. 8, 2014. [Google Scholar]
  28. X. Huang, R. Ranade, W. Ni, and V. C. Li, “Development of green engineered cementitious composites using iron ore tailings as aggregates, ” Constr. Build. Mater., vol. 44, p. 8, 2013. [Google Scholar]
  29. B. Guo Ma, L. Xiong Cai, X. Guo Li, and S. Wei Jian, “Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products, ” J. Clean. Prod., vol. 127, pp. 162–171, 2016. [CrossRef] [Google Scholar]
  30. M. Al Muttaqii et al., “The characterization and physical properties of paving block products over basalt minerals, ” AIP Conf. Proc., vol. 2232, p. 6, 2020. [Google Scholar]
  31. M. Otieno and E. Ndoro, “Utilization of kimberlite tailings as aggregates in concrete Strength and selected durability properties, ” MRS Adv., vol. 5, p. 8, 2020. [Google Scholar]
  32. E. Sangsefidi, P. M. Black, D. J. Wilson, and T. J. Larkin, “A comparison of weathering process of andesitic UGMs in two quarries in New Zealand, ” Constr. Build. Mater., vol. 279, p. 16, 2021. [Google Scholar]
  33. M. Alexander and D. Davis, “The influence of aggregates on the compressive strength and elastic modulus of concrete, ” Die Siviele Ing., p. 10, 1992. [Google Scholar]
  34. M. Y. Elsheikh, A. A. Elshami, and I. A. Mohsen, “Green Concrete Utilizing Andesite and Rhyolite Aggregate, ” Int. J. Civ. Eng. Technol., vol. 11, p. 15, 2020, doi: 10.34218/ijciet.11.7.2020.001. [Google Scholar]
  35. H. Beushausen and T. Dittmer, “The influence of aggregate type on the strength and elastic modulus of high strength concrete, ” Constr. Build. Mater., vol. 74, p. 8, 2015. [Google Scholar]
  36. M. Elsheikh, A. Abdel Raheem, and I. Abdel Mohsen, “Using Igneous Rocks as a Coarse Aggregate in Concrete, ” Egypt. J. Eng. Sci. Technol., vol. 22, p. 18, 2017. [Google Scholar]
  37. I. Znamenáčková, S. Dolinská, M. Kováčová, M. Lovás, V. Čablík, and L. Čablíková, “Innovative Method of Material Treatmentby Microwave Energy, ” Procedia Earth Planet. Sci., vol. 15, p. 6, 2015. [Google Scholar]
  38. P. A. V. S. Rajendra, and P. L. Kumar P, “Studies on Gold Ore Tailings as Partial Replacement of Fine Aggregates in Concrete, ” Int. J. Latest Technol. Eng., vol. 6, p. 3, 2017. [Google Scholar]
  39. C. Ince, “Reusing gold-mine tailings in cement mortars: Mechanical properties and socioeconomic developments for the Lefke-Xeros area of Cyprus, ” J. Clean. Prod., vol. 238, p. 11, 2019. [Google Scholar]
  40. H. Lin, X. Jiang, B. Li, Y. Dong, and L. Qian, “Soilless revegetation: An efficient means of improving physicochemical properties and reshaping microbial communities of high-salty gold mine tailings, ” Ecotoxicol. Environ. Saf., vol. 207, p. 9, 2021. [Google Scholar]
  41. J. K. Lee, J. Q. Shang, and S. Jeong, “Thermomechanical properties and microfabric of fly ashstabilized gold tailings, ” J. Hazard. Mater., vol. 276, p. 9, 2014. [Google Scholar]
  42. W. Zhang, X. Gu, J. Qiu, J. Liu, Y. Zhao, and X. Li, “Effects of iron ore tailings on the compressive strength and permeability of ultrahigh performance concrete, ” Constr. Build. Mater., vol. 260, p. 10, 2020. [Google Scholar]
  43. R. Muigai, M. G. Alexander, and P. Moyo, “3 Life-cycle of concrete, ” J. SOUTH AFRICAN Inst. Civ. Eng., vol. 55, p. 6, 2014. [Google Scholar]
  44. R. Cepuritis, S. Jacobsen, and T. Onnela, “Sand production with VSI crushing and air classification: Optimising fines grading for concrete production with micro-proportioning, ” Miner. Eng., vol. 78, p. 14, 2015. [CrossRef] [Google Scholar]
  45. H. U. Sverdrup, D. Koca, and P. Schlyter, “A Simple System Dynamics Model for the Global Production Rate of Sand, Gravel, Crushed Rock and Stone, Market Prices and Long-Term Supply Embedded into the WORLD6 Model, ” Biophys. Econ. Resour. Qual., vol. 2, p. 20, 2017. [Google Scholar]
  46. J. O. Ikotun et al., “Investigation of oil drill cuttings as partial replacement of cements in concrete for low strength structures, ” Int. J. Civ. Eng. Technol., vol. 9, no. 11, 2018. [Google Scholar]
  47. J. O. Ikotun, J. O. Okeniyi, E. T. Akinlabi, S. A. Akinlabi, E. T. Okeniyi, and D. O. Olanrewaju, “Physicochemical and mineralogical characterization datasets from oil drill cuttings in comparison with other cement types for cement partial-replacement in concrete, ” Chem. Data Collect., vol. 19, p. 100176, 2019, doi: 10.1016/j.cdc.2019.100176. [CrossRef] [Google Scholar]
  48. E. A. Oluwasola, M. R. Hainin, and M. M. A. Aziz, “Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction, ” Transp. Geotech., vol. 2, p. 9, 2015. [Google Scholar]
  49. S. Siddique and J. G. Jang, “Assessment of molybdenum mine tailings as filler in cement mortar, ” J. Build. Eng., vol. 31, no. November 2019, p. 8, 2020. [Google Scholar]
  50. J. Choudhary, B. Kumar, and A. Gupta, “Utilization of solid waste materials as alternative fillers in asphalt mixes: A review, ” Constr. Build. Mater., vol. 234, p. 117271, 2020, doi: 10.1016/j.conbuildmat.2019.117271. [CrossRef] [Google Scholar]
  51. R. Melotti, E. Santagata, M. Bassani, M. Salvo, and S. Rizzo, “A preliminary investigation into the physical and chemical properties of biomass ashes used as aggregate fillers for bituminous mixtures, ” Waste Manag., vol. 33, p. 11, 2013. [Google Scholar]
  52. A. J. Tenza-Abril, J. M. Saval, V. E. García-Vera, A. M. Solak, T. R. Herráiz, and J. M. Ortega, “Effects of using mine tailings from La Unión (Spain) in hot bituminous mixes design, ” Appl. Sci., vol. 9, p. 16, 2019. [Google Scholar]
  53. E. A. Oluwasola, M. R. Hainin, M. M. A. Aziz, and M. N. M. Warid, “Volumetric properties and leaching effect of asphalt mixes with electric arc furnace steel slag and copper mine tailings, ” Sains Malaysiana, vol. 45, p. 9, 2016. [Google Scholar]
  54. V. Sabat, M. Shaikh, M. Kanap, M. Chaudhari, and S. Suryawanshi, “Use of Iron ore Tailings as a Construction Material, ” Int. J. Conceptions Mech. Civ. Eng., vol. 3, p. 6, 2015. [Google Scholar]
  55. Z. X. Tian, Z. H. Zhao, C. Q. Dai, and S. J. Liu, “Experimental Study on the Properties of Concrete Mixed with Iron Ore Tailings, ” Adv. Mater. Sci. Eng., vol. 2016, p. 10, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.