Open Access
Issue |
MATEC Web Conf.
Volume 364, 2022
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022)
|
|
---|---|---|
Article Number | 04011 | |
Number of page(s) | 6 | |
Section | Concrete Repair, Rehabilitation and Retrofitting - Concrete Patch Repairs and Bonded Overlays | |
DOI | https://doi.org/10.1051/matecconf/202236404011 | |
Published online | 30 September 2022 |
- D. V Ribeiro, J.C.C. Abrantes, Application of electrochemical impedance spectroscopy ( EIS ) to monitor the corrosion of reinforced concrete : A new approach, Constr. Build. Mater. 111 (2016) 98–104. https://doi.org/10.1016/j.conbuildmat.2016.02.047. [CrossRef] [Google Scholar]
- J.M. Franco de Carvalho, W.C. Fontes, C.F. de Azevedo, G.J. Brigolini, W. Schmidt, R.A.F. Peixoto, Enhancing the eco-efficiency of concrete using engineered recycled mineral admixtures and recycled aggregates, J. Clean. Prod. 257 (2020). https://doi.org/10.1016/j.jclepro.2020.120530. [CrossRef] [Google Scholar]
- S.K. Kirthika, S.K. Singh, A. Chourasia, Alternative fine aggregates in production of sustainable concreteA review, J. Clean. Prod. 268 (2020) 122089. https://doi.org/10.1016/j.jclepro.2020.122089. [CrossRef] [Google Scholar]
- A. Sales, F.R. Souza, Concretes and mortars recycled with water treatment sludge and construction and demolition rubble, Constr. Build. Mater. 23 (2009) 2362–2370. https://doi.org/10.1016/j.conbuildmat.2008.11.001. [CrossRef] [Google Scholar]
- A. Sales, F.R. De Souza, F.D.C.R. Almeida, Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust, Constr. Build. Mater. 25 (2011) 2793–2798. https://doi.org/10.1016/j.conbuildmat.2010.12.057. [CrossRef] [Google Scholar]
- F.C.R. Almeida, A. Sales, J.P. Moretti, P.C.D. Mendes, Sugarcane bagasse ash sand (SBAS): Brazilian agroindustrial by-product for use in mortar, Constr. Build. Mater. 82 (2015) 31–38. https://doi.org/10.1016/j.conbuildmat.2015.02.039. [CrossRef] [Google Scholar]
- E. Arif, M.W. Clark, N. Lake, Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete, Constr. Build. Mater. 151 (2017) 692–703. https://doi.org/10.1016/j.conbuildmat.2017.06.136. [CrossRef] [Google Scholar]
- F.C.R. Almeida, A. Sales, J.P. Moretti, P.C.D. Mendes, Use of sugarcane bagasse ash sand (SBAS) as corrosion retardant for reinforced Portland slag cement concrete, Constr. Build. Mater. 226 (2019) 72–82. https://doi.org/10.1016/j.conbuildmat.2019.07.217. [CrossRef] [Google Scholar]
- Associação Brasileira de Normas Técnicas, NBR 16697: Cimento Portland Requisitos, (2018) 12. [Google Scholar]
- British Standard Institution, BS EN 197-1 Cement Part 1: Composition, specifications and conformity criteria for common cements, (2011) 50. [Google Scholar]
- J.P. Moretti, A. Sales, V.A. Quarcioni, D.C.B. Silva, M.C.B. Oliveira, N.S. Pinto, L.W.S.L. Ramos, Pore size distribution of mortars produced with agroindustrial waste, J. Clean. Prod. 187 (2018) 473–484. https://doi.org/10.1016/j.jclepro.2018.03.219. [CrossRef] [Google Scholar]
- L.G.G. Godoy, A.B. Rohden, M.R. Garcez, S. Da Dalt, L. Bonan Gomes, Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste, Case Stud. Constr. Mater. 12 (2020). https://doi.org/10.1016/j.cscm.2020.e00329. [Google Scholar]
- ABNT, NBR 5738 Concreto Procedimento para moldagem e cura de corpos de prova, (2015). [Google Scholar]
- Associação Brasileira de Normas Técnicas, NBR 9479: Argamassa e concreto câmaras úmidas e tanques paar cura de corpos-de-prova, (2006) 2. [Google Scholar]
- RILEM, Draft RecomendationMeasurement of hardened concrete carbonation depth CPC 18, Mater. Struct. 17 (1984) 435–440. [CrossRef] [Google Scholar]
- E. Possan, Carbonatação acelerada : estado da arte das pesquisas no Brasil, Ambient. Construìdo. 7 (2007) 7–20. [Google Scholar]
- ASTM International, C876 15 Standard test method for corrosion potentials of uncoated reinforcing steel in concrete, (2015) 8. https://doi.org/10.1520/C0876-15.2. [Google Scholar]
- AASHTO, T259 Standard method of test for resistance of concrete to chloride ion penetration, (2002). [Google Scholar]
- F. He, C. Shi, Q. Yuan, C. Chen, K. Zheng, AgNO3-based colorimetric methods for measurement of chloride penetration in concrete, Constr. Build. Mater. 26 (2012) 1–8. https://doi.org/10.1016/j.conbuildmat.2011.06.003. [CrossRef] [Google Scholar]
- Associação Brasileira de Normas Técnicas, NBR 6118: Projeto de estruturas de concreto — Procedimento, (2014) 238. https://doi.org/10.1080.10;13.220.99. [Google Scholar]
- British Standard Institution, BS EN 1992-1-1:2004, (2014). [Google Scholar]
- ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19), 2019. [Google Scholar]
- A.M. de Oliveira, O. Cascudo, Effect of mineral additions incorporated in concrete on thermodynamic and kinetic parameters of chlorideinduced reinforcement corrosion, Constr. Build. Mater. 192 (2018) 467–477. https://doi.org/10.1016/j.conbuildmat.2018.10.100. [CrossRef] [Google Scholar]
- A.B.M.A. Kaish, T.C. Odimegwu, I. Zakaria, M.M. Abood, L. Nahar, Properties of concrete incorporating alum sludge in different conditions as partial replacement of fine aggregate, Constr. Build. Mater. 284 (2021) 122669. https://doi.org/10.1016/j.conbuildmat.2021.122669. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.