Open Access
Issue
MATEC Web Conf.
Volume 363, 2022
5th International Conference on Advances in Materials, Machinery, Electronics (AMME 2022)
Article Number 01032
Number of page(s) 7
Section Research papers
DOI https://doi.org/10.1051/matecconf/202236301032
Published online 29 August 2022
  1. Elsharkawy, S. and A. Mata, Hierarchical Biomineralization: from Nature's Designs to Synthetic Materials for Regenerative Medicine and Dentistry. Adv Healthc Mater, 2018. 7(18): p. e1800178. [CrossRef] [Google Scholar]
  2. Lacruz, R.S., et al., DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev, 2017. 97(3): p. 939–993. [CrossRef] [Google Scholar]
  3. Ackermann, M., et al., Biomimetic transformation of polyphosphate microparticles during restoration of damaged teeth. Dent Mater, 2019. 35(2): p. 244–256. [CrossRef] [Google Scholar]
  4. Muller, W., et al., A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate. Polymers (Basel), 2017. 9(4). [Google Scholar]
  5. Selwitz, R.H., A.I. Ismail and N.B. Pitts, Dental caries. Lancet, 2007. 369(9555): p. 51–9. [CrossRef] [Google Scholar]
  6. Borges, J. and J.F. Mano, Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers. Chemical reviews, 2014. 114(18): p. 8883–8942. [CrossRef] [Google Scholar]
  7. Yeom, B., et al., Abiotic tooth enamel. Nature, 2017. 543(7643): p. 95–98. [CrossRef] [Google Scholar]
  8. Wong, H.M., Y.Y. Zhang and Q.L. Li, An enamel-inspired bioactive material with multiscale structure and antibacterial adhesion property. Bioactive Materials, 2022. 7: p. 491–503. [CrossRef] [Google Scholar]
  9. Anastasiou, A.D., et al., Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel. Acta Biomaterialia, 2018. 71: p. 86–95. [CrossRef] [Google Scholar]
  10. Wang, S., et al., Rapid regeneration of enamel-like-oriented inorganic crystals by using rotary evaporation. Mater Sci Eng C Mater Biol Appl, 2020. 115: p. 111–141. [Google Scholar]
  11. He, L.H. and M. Swain, A novel polymer infiltrated ceramic dental material. Dent Mater, 2011. 27(6): p. 527–34. [CrossRef] [Google Scholar]
  12. Della, B.A., P.H. Corazza and Y. Zhang, Characterization of a polymer-infiltrated ceramic-network material. Dent Mater, 2014. 30(5): p. 564–9. [CrossRef] [Google Scholar]
  13. El, Z.H., et al., Polymer infiltrated ceramic network structures for resistance to fatigue fracture and wear. Dent Mater, 2016. 32(11): p. 1352–1361. [CrossRef] [Google Scholar]
  14. Ikeda, H., Y. Nagamatsu and H. Shimizu, Preparation of silica-poly(methyl methacrylate) composite with a nanoscale dual-network structure and hardness comparable to human enamel. Dental Materials, 2019. 35(6): p. 893–899. [CrossRef] [Google Scholar]
  15. Kawajiri, Y., et al., PICN Nanocomposite as Dental CAD/CAM Block Comparable to Human Tooth in Terms of Hardness and Flexural Modulus. Materials, 2021. 14(5): p. 1182. [CrossRef] [Google Scholar]
  16. Santos, F., et al., Comparative study of the wear of the pair human teeth/Vita Enamic(R) vs commonly used dental ceramics through chewing simulation. J Mech Behav Biomed Mater, 2018. 88: p. 251–260. [CrossRef] [Google Scholar]
  17. Algharaibeh, S., et al., Fabrication and mechanical properties of biomimetic nacre-like ceramic/polymer composites for chairside CAD/CAM dental restorations. Dental Materials, 2022. 38(1): p. 121–132. [CrossRef] [Google Scholar]
  18. Tan, G., et al., Nature - Inspired Nacre - Like Composites Combining Human Tooth - Matching Elasticity and Hardness with Exceptional Damage Tolerance. Advanced Materials, 2019. 31(52): p. 1904603. [CrossRef] [Google Scholar]
  19. Zhao, H., et al., Multiscale engineered artificial tooth enamel. Science, 2022. 375(6580): p. 551–556. [CrossRef] [Google Scholar]
  20. Degli, E.L., et al., Characterization of a Toothpaste Containing Bioactive Hydroxyapatites and In Vitro Evaluation of Its Efficacy to Remineralize Enamel and to Occlude Dentinal Tubules. Materials (Basel), 2020. 13(13). [Google Scholar]
  21. Bossu, M., et al., Enamel remineralization and repair results of Biomimetic Hydroxyapatite toothpaste on deciduous teeth: an effective option to fluoride toothpaste. J Nanobiotechnology, 2019. 17(1): p. 17. [CrossRef] [Google Scholar]
  22. Lelli, M., et al., Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study. Front Physiol, 2014. 5: p. 333. [CrossRef] [Google Scholar]
  23. Muller, W.E., et al., A biomimetic approach to ameliorate dental hypersensitivity by amorphous polyphosphate microparticles. Dent Mater, 2016. 32(6): p. 775–83. [CrossRef] [Google Scholar]
  24. Muller, W., et al., Bifunctional dentifrice: Amorphous polyphosphate a regeneratively active sealant with potent anti-Streptococcus mutans activity. Dent Mater, 2017. 33(7): p. 753–764. [CrossRef] [Google Scholar]
  25. Zhou, C., et al., Casein phosphopeptide-amorphous calcium phosphate remineralization of primary teeth early enamel lesions. J Dent, 2014. 42(1): p. 21–9. [CrossRef] [Google Scholar]
  26. Huq, N.L., et al., The Interactions of CPP-ACP with Saliva. Int J Mol Sci, 2016. 17(6). [Google Scholar]
  27. Wang, Z., et al., A novel fluorescent adhesive-assisted biomimetic mineralization. Nanoscale, 2018. 10(40): p. 18980–18987. [CrossRef] [Google Scholar]
  28. Gao, Y., et al., Enamel remineralization via poly(amido amine) and adhesive resin containing calcium phosphate nanoparticles. J Dent, 2020. 92: p. 103262. [CrossRef] [Google Scholar]
  29. De Yoreo, J.J., et al., CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015. 349(6247): p. aaa6760. [CrossRef] [Google Scholar]
  30. Shao, C., et al., Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Sci Adv, 2019. 5(8): p. eaaw9569. [CrossRef] [Google Scholar]
  31. Zhang, J., et al., Hydroxyapatite Formation Coexists with Amyloid-like Self-Assembly of Human Amelogenin. Int J Mol Sci, 2020. 21(8). [Google Scholar]
  32. Kwak, S.Y., et al., Biomimetic Enamel Regeneration Mediated by Leucine-Rich Amelogenin Peptide. J Dent Res, 2017. 96(5): p. 524–530. [CrossRef] [Google Scholar]
  33. Fang, Z., et al., Enamel-like tissue regeneration by using biomimetic enamel matrix proteins. Int J Biol Macromol, 2021. 183: p. 2131–2141. [CrossRef] [Google Scholar]
  34. Wang, D., et al., Controlling Enamel Remineralization by Amyloid-Like Amelogenin Mimics. Adv Mater, 2020. 32(31): p. e2002080. [CrossRef] [Google Scholar]
  35. Ruan, Q., et al., An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater, 2013. 9(7): p. 7289–97. [CrossRef] [Google Scholar]
  36. Prajapati, S., et al., The Presence of MMP-20 Reinforces Biomimetic Enamel Regrowth. J Dent Res, 2018. 97(1): p. 84–90. [CrossRef] [Google Scholar]
  37. Musat, V., et al., A Chitosan-Agarose Polysaccharide-Based Hydrogel for Biomimetic Remineralization of Dental Enamel. Biomolecules, 2021. 11(8). [Google Scholar]
  38. Kind, L., et al., Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. J Dent Res, 2017. 96(7): p. 790–797. [CrossRef] [Google Scholar]
  39. Chang, R., et al., Phosphorylated and Phosphonated Low-Complexity Protein Segments for Biomimetic Mineralization and Repair of Tooth Enamel. Adv Sci (Weinh), 2022. 9(6): p. e2103829. [CrossRef] [Google Scholar]
  40. Kim, F., et al., Functionalized DNA nanostructures as scaffolds for guided mineralization. Chem Sci, 2019. 10(45): p. 10537–10542. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.